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Abstract. This paper generalizes the utility with a robust control criterion, de-
veloped by Hansen, Sargent, and Tallarini [14], Anderson, Hansen, and Sargent [2],
and Skiadas [27], to a recursive one under non-Markovian jump-diffusion informa-
tion, and presents the existence and uniqueness of the generalized utility under
some regualrity condition by utilizing approaches of Skiadas [27] and Schroder and
Skiadas [25]. This paper also shows that the generalized utility admits a normalized
representation, where future utility enters the recursion through an aggregator, and
examines the generalized utility’s basic properties including “ambiguity aversions.”
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1. Introduction

Utilities with “Knightian uncertainty” or “ambiguity” have been studied for the
past decade.1 The utility with a stochastic robust control criterion, developed by
Hansen, Sargent, and Tallarini [14], Anderson, Hansen, and Sargent [2], Lazrak
and Quenez [21], and Skiadas [27], is one of such utilities. This paper tentatively
calls the utility the robust utility. The standard robust utility takes the form of
minimization, over a set of probabilities equivalent to a reference probability, of
a time-additive utility plus the relative entropy which penalizes a deviation from
the reference probability. It, therefore, must be proven that the utility functional
is well-defined, that is, the utility functional uniquely exists. Anderson, Hansen,
and Sargent [2] presented the standard robust utility’s existence, uniqueness, and a
representation with a semigroup generator under Markovian jump-diffusion infor-
mation. Lazrak and Quenez [21] showed that the standard robust utility’s existence,
uniqueness, and a stochastic differential utility (SDU, hereafter) representation un-
der non-Markovian diffusion information. Skiadas [27] generalized the underlying
time-additive utility of the standard robust utility to a non-recursive non-time-
additive utility including as special cases, habit formation utilities2 and the Hindy-
Huang-Kreps utility3, and presented the existence, uniqueness, and normalized SDU
representation, where future utility enters the recursion through an aggregator, of
the robust utility under non-Markovian diffusion information. Skiadas [27] also
gave an outline of the proof for similar results in the case when the underlying
utility is SDU. The purpose of this paper is to generalize the underlying utility
of robust utility to a recursive one including as special cases, the SDU, recursive
versions of habit formation utilities, and a recursive version of Hindy-Huang-Kreps
utility4, under non-Markovian jump-diffusion information, and then, to examine
the generalized utility’s existence, uniqueness, representation, and basic properties
including time consistency, preferences for information, and “ambiguity aversions.”

This paper is summarized as follows. A dynamic utility (Duffie and Skiadas [10]),
which is a recursive utility including as special cases, the SDU, the recursive habit
formation utility, and the recursive Hindy-Huang-Kreps utility, is first introduced
under a non-Markovian jump-diffusion information. Then the stochastic robust
control criterion advocated by Anderson, Hansen, and Sargent [2], is applied to
the dynamic utility to introduce ambiguity aversion. This paper calls the utility
the robust dynamic utility (RDU, hereafter). First, it is presented by employing
the same approach as Skiadas [27] that under some regularity condition, for each
consumption process, the utility process of RDU is a unique solution to a backward

1See, e.g., Anderson, Hansen, and Sargent [2], Chen and Epstein [5], Epstein [11], Epstein
and Zhang [13], Hansen, Sargent, and Tallarini [14], Hansen, Sargent, Turmuhambetova, and
Williams [15], Lazrak and Quenez [21], Maccheroni, Marinacci, and Rustichini [22], Skiadas [27],
and Wang [29].

2Habit formation utilities are divided into two types, i.e., the internal habit formation utility
and the external habit formation utility. The internal habit formation utility was introduced by
Ryder and Heal [24], and has been developed by Sundaresan [28], Constantinides [6], Detemple
and Zapareto [8], and Dai [7]. The external habit formation utility was proposed by Abel [1], and
extended by Campbell and Cochrane [4].

3The Hindy-Huang-Kreps utility was introduced by Hindy, Huang, and Kreps [17], and gener-
alized by Hindy and Huang [16].

4Recursive versions of internal habit formation utility and of Hindy-Huang-Kreps utility were
introduced by Duffie and Epstein [9] and extended by Duffie and Skiadas [10].
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stochastic differential-difference equation (BSDDE, hereafter), if there exists the
unique solution to the BSDDE. Then the existence and uniqueness of solutions to
the BSDDE is proven by generalizing the approach of Schroder and Skiadas [25]
for an SDU under diffusion information. The RDU process also admits an unnor-
malized SDU-like representation under jump-diffusion information, but this unnor-
malized representation of RDU is not so analytically tractable. While any SDU
is normalized under pure diffusion information, this does not apply to the case of
jump-diffusion information. Recently, a sufficient condition for the normalization of
SDU has been revealed under jump-diffusion information (Kusuda [19]). It is con-
firmed that this condition holds for the RDU, and therefore the normalized RDU
is obtained. Next, this paper exmines the RDU’s basic properties including time
consistency, preferences for information, and monotonicity by generalizing results
of Duffie and Epstein [9] and of Skiadas [26] for normalized SDUs. Finally, atti-
tudes toward ambiguity of agents with RDU are examined by mainly adopting the
notions proposed by Chen and Epstein [5].

The remainder of this paper is organized into four sections and four appendices.
Section 2 introduces the RDU under jump-diffusion information. Section 3 presents
the existence and uniqueness of RDU. Section 4 reveals that the RDU admits a nor-
malized representation. Section 5 examines the RDU’s basic properties. Appendix
A, B, and C introduce marked point process, Ito’s Formula and Girsanov’s Theo-
rem, and an extension of Gronwall-Bellman Inequality, respectively. Appendix D
shows proofs of lemmas.

2. Robust Dynamic Utility under Jump-Diffusion Information

This section first reviews the dynamic utility and then introduces the RDU under
jump-diffusion information.

A continuous-time model with finite time span T := [0, T ] and with a complete
filtered probability space (Ω,F , F, P ) is assumed, where F = (Ft)t∈T is the natural
filtration generated by a d-dimensional Wiener process W and a marked point pro-
cess ν(dt × dz) on a Lusin space (Z,Z) (in usual applications, Z = R

d′
, or N

d′
, or

a finite set) which is independent of W and has the P -intensity kernel λt(dz) (for
marked point process, see Appendix A). A convex set C of semimartingales is taken
as primitive. Any element C of C represents some cumulative consumtpion process,
meaning that for every time t ∈ T, Ct represents the total net consumption up to
time t. Let L∞ := L∞(Ω × T,P , µ) where P is the predictable σ-algebra, and µ
is the product measure of P and the Lebesgue measure on T. For each n ∈ N, the
space of P-measurable real-valued processes Y satisfying the integrability condition∫ T

0 |Ys|n ds < ∞ P -a.s., is denoted by Ln. The space of P ⊗ Z-measurable real-
valued process H satisfying the integrability condition

∫ T

0

∫
Z
|Hs(z)|λs(dz) ds < ∞

P -a.s., is denoted by L(λt(dz)× dt). The expectation operator under P is denoted
by E, and the conditional expectation operator under P given Ft is denoted by Et.

2.1. Dynamic Utility. First, the dynamic utility is reviwed following Duffie and
Skiadas [10]. Let X : C → L :=

∏n0
j=1 L∞(Ω×T,P , µ) where

∏
denotes Cartesian

product. Let f : Ω × T × R
n0 × R → R denote a function such that f( · , · , x, u)

is a predictable process for every (x, u). Let β ∈ R+ and fβ(x, u) = f(x, u) − βu.
A functional U : C → R is said to be a dynamic utility with characteristic (f, X, β)
or (fβ , X) if and only if U(C) = U0(C) for every C ∈ C where U0(C) is the initial
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value of unique solution Ut(C) in L∞ to the recursion

Ut(C) = Et

[∫ T

t

e−β(s−t)f(Xs(C), Us(C)) ds

]
∀t ∈ T, (2.1)

or equivalently

Ut(C) = Et

[∫ T

t

fβ(Xs(C), Us(C)) ds

]
∀t ∈ T. (2.2)

The pair (fβ, X) or the function fβ is called the aggregator of the dynamic utility
U .

The dynamic utility is a generalization of SDU, and was first introduced by
Duffie and Skiadas [10]. The dynamic utility includes as special cases, the SDU, the
recursive internal and external habit formation utilities, and the recursive Hindy-
Huang-Kreps utility as shown below.

Example 1. Suppose Ct =
∫ t

0 csds and Xt(C) = ct. Then U is the SDU introduced
by Duffie and Epstein [9]. In particular, if f(ct, Ut) = v(ct) where v is a von
Neumann-Morgenstern utility function, then U is a standard time-additive utility.

Example 2. Suppose Ct =
∫ t

0 csds and Xt(C) = (ct, xt) where xt = x0+
∫ t

0 h0(cs, xs)
ds +

∫ t

0 h(cs, xs) · dWs +
∫ t

0

∫
Z

H(cs, xs, z)ν(ds × dz) for some h0 : T × R
2 → R,

h : T×R
2 → R

d, and H : T×R
2×Z → R such that h0, h, and

∫
Z

H(cs, xs, z)ν(ds×
dz). If f(x, u) = v(x) and H = 0 then U is a stochastic internal habit formation
utility which was introduced by Ryder and Heal [24], and has been extended by
Sundaresan [28], Constantinides [6], Detemple and Zapareto [8], and Dai [7]. If f
and H are general, then U is a recursive stochastic internal habit formation utility,
which is a generalization of the recursive stochastic internal habit formation utility
developed by Duffie and Epstein [9] and Duffie and Skiadas [10].

Example 3. Suppose Ct =
∫ t

0 csds and Xt(C) = x0+
∫ t

0 h0(cA
s , Xs) ds+

∫ t

0 h(cA
s , Xs)·

dWs +
∫ t

0

∫
Z

H(cA
s , Xs, z)ν(ds × dz) where cA ∈ L∞ is aggregate consumption pro-

cess, h0 : T × R
2 → R, h : T × R

2 → R
d, and H : T × R

2 × Z → R such that h0,
h, and H satisfy the same conditions as the above. If f(x, u) = v(x), h = 0, and
H = 0, then U is the external habit formation utility proposed by Abel [1], and
extended by Campbell and Cochrane [4]. If f , h, and H are general, then U is a
recursive stochastic external habit formation utility.

Example 4. Suppose Xt(C) = x0 +
∫ t

0 hs dCs for some h0 : Ω×T → R such that h
is a bounded predictable process. If f(x, u) = v(x), then U is a Hindy-Huang-Kreps
utility which was introduced by Hindy, Huang, and Kreps [17] and generalized by
Hindy and Huang [16]. If f is general, then U is a recursive Hindy-Huang-Kreps
utility introduced by Duffie and Epstein [9] and extended by Duffie and Skiadas [10].

A sufficient condition for the existence and uniqueness of the dynamic utility
U(C) given by Duffie and Epstein [9] and Duffie and Skiadas [10], is as follows:
The aggregator fβ of dynamic utility satisfies the following conditions:

Uniform Lipschitz condition in utility: There exists k1 ∈ R++ such that

|fβ(x, u) − fβ(x, ũ)| � k1 |u − ũ| ∀(ω, t, x, u, ũ).
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Growth condition in consumption: There exists k2 ∈ R++ such that

|fβ(x, 0)| � k2(1 + ‖x‖) ∀(ω, t, x).

where ‖ · ‖ is Euclidean norm.

Let BX(C) denote the space of functions g : Ω×T×R
n0 → R++ such that for each x,

g( · , · , x) is a predictable process, and for each C ∈ C, esssup(ω,t)∈Ω×T g(ω, t, Xt(C)) <
K for some K ∈ R++. The above condition is slightly relaxed as follows.

Assumption 1. The function fβ satisfies the following conditions:

Lipschitz condition in utility: There exists a function k1 ∈ BX(C) such
that

|fβ(x, u) − fβ(x, ũ)| � k1(ω, t, x) |u − ũ| ∀(ω, t, x, u, ũ).

Generalized growth condition in consumption: There exists a function
k2 ∈ BX(C) such that

|fβ(x, 0)| � k2(ω, t, x) ∀(ω, t, x).

Conditions on fβ in Assumption 1 can be also interpreted as restrictions on the
consumption space C. The following proposition is an extension of the results of
Duffie and Epstein [9] and Duffie and Skiadas [10].

Proposition 1. Under Assumption 1, for every C ∈ C, there exists a unique
solution U(C) ∈ L∞ to recursion (2.1).

Proof. Let C ∈ C. Define a mapping F : L∞ → L∞ by

Ft(U) = Et

[∫ T

t

fβ(Xs(C), Us) ds

]
∀t ∈ T. (2.3)

It follows from Assumption 1, X(C) ∈ L∞, and (k1, k2) ∈ BX(C) × BX(C) that for
each t ∈ T,

|Ft(U)| � Et

[∫ T

t

(
|fβ(Xs(C), Us) − fβ(Xs(C), 0)| + |fβ(Xs(C), 0)|

)
ds

]

�
∫ T

t

(
ess sup
(ω,s)∈Ω×T

k1(Xs(C)) |Us| + ess sup
(ω,s)∈Ω×T

k2(Xs(C))
)

ds

� K1(T − t)‖U‖L∞ + K2(T − t)

for some (K1, K2) ∈ R
2
++. Thus, F (U) ∈ L∞, and F : L∞ → L∞ is well-defined.

Let (U, Ũ) ∈ L∞ × L∞ and t ∈ T. The following holds:

|Ft(U) − Ft(Ũ)| � Et

[∫ T

t

|fβ(Xs(C), Us) − fβ(Xs(C), Ũs)| ds

]

� Et

[∫ T

t

k1(Xs(C)) |Us − Ũs| ds

]

� KEt

[∫ T

t

|Us − Ũs| ds

]
� K(T − t)‖U − Ũ‖L∞

(2.4)
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where K = ess sup(ω,s)∈Ω×T k1(Xs(C)). It follows from (2.4) that

|F (2)
t (U) − F

(2)
t (Ũ)| � Et

[∫ T

t

K|Fs(U) − Fs(Ũ)| ds

]

� K2‖U − Ũ‖L∞

∫ T

t

(T − s) ds � {K(T − t)}2

2!
‖U − Ũ‖L∞ .

Repeating this calculation yields

|F (n)
t (U) − F

(n)
t (Ũ)| � {K(T − t)}n

n!
‖U − Ũ‖L∞ ∀n ∈ N,

and therefore,

‖F (n)(U) − F (n)(Ũ)‖L∞ � (KT )n

n!
‖U − Ũ‖L∞ ∀n ∈ N.

Thus, for n large enough, F (n) is a contraction mapping. Hence, there exists
a unique fixed point UC ∈ L∞, i.e., F (n)(UC) = UC . Since F (n)(F (UC)) =
F (F (n)(UC)) = F (UC), it follows by uniqueness that F (UC) = UC . The unique-
ness of fixed points of F follows from that of F (n). Therefore, U(C) := UC is the
unique solution in L∞ to the recursion (2.1). �

2.2. Robust Dynamic Utility. Next, the RDU is introuduced. Let P be the set
of all probability measures on (Ω,F) that are equivalent to P , i.e. they define
the same null events as P . It follows from Girsanov’s Theorem (see Appendix B.2)
that an equivalent measure P v,w is characterized by the Radon-Nikodym derivative
dP v,w = Λv,w

T dP where Λv,w
T is given by

Λv,w
T = exp

(∫ T

0

(
−1

2
‖vt‖2−

∫
Z

wt(z)λt(dz)
)

dt+
∫ T

0

vt · dWt+
∫ T

0

log(1+wt(z)) ν(dt×dz)
)

(2.5)
where vt ∈

∏d
j=1 L2, wt(z) ∈ L(λt(dz) × dt) satisfying wt(z) > −1 P -a.s. for every

(t, z) ∈ T×Z, and vt · dWt =
∑d

j=1 vjtdWjt. The expectation operator under P v,w

is denoted by Ev,w, and the conditional expectation operator under P v,w given Ft

is denoted by Ev,w
t . An RDU with the reference probability P takes the form of

minimization, over s set of equivalent probability measures, of a dynamic utility
plus the discounted relative entropy of P v,w with respect to P , which penalizes a
deviation from the reference probability P . Here the discounted relative entropy of
P v,w with respect to P is defined by

R̃v,w
t = Ev,w

t

[
β

∫ T

t

e−β(s−t) log
(

Λv,w
s

Λv,w
t

)
ds + e−β(T−t) log

(
Λv,w

T

Λv,w
t

)]
∀t ∈ T.

(2.6)
Let ζ ∈ R++. For each C ∈ C, define a process Uv,w(C) in L∞ by

Uv,w
t (C) = Ev,w

t

[∫ T

t

e−β(s−t)f(Xs(C), Uv,w
s (C)) ds

]
+

1
ζ
R̃v,w

t ∀t ∈ T, (2.7)

or equivalently

Uv,w
t (C) = Ev,w

t

[∫ T

t

fβ(Xs(C), Uv,w
s (C)) ds

]
+

1
ζ
Rv,w

t ∀t ∈ T (2.8)
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where Rv,w
t is the relative entropy of P v,w with respect to P , defined by

Rv,w
t = Ev,w

t

[
log

(
Λv,w

T

Λv,w
t

)]
.

Let P̄ denote the set of all P v,w ∈ P such that Uv,w(C) is well-defined for every
C ∈ C. The notion of RDU is defined in the following.

Definition 1. A functional Û : C → R is said to be an RDU with characteristic
(f, X, β, ζ) or (fβ, X, ζ) if and only if for every C ∈ C, Û(C) satisfies

Û(C) = min
P v,w∈P̄

Uv,w
0 (C). (2.9)

Remark 1. For ζ = 0+, the minimizer of (2.9) is the reference probability P .
As ζ increases, the relative entropy of the minimizer of (2.9) with respect to the
reference probability P becomes larger. It shall be shown in Section 5 that the larger
the parameter ζ is, the more “ambiguity averse” the agent is. For an axiomatic
treatment of robust utility in atemporal setting, refer to Maccheroni, Marinacci,
and Rustichini [22], and Wang [29].

3. Existence and Uniqueness of RDU

This section presents that under Assumption 1, the RDU defined by Definition 1
is well-defined, and the utility process of RDU is a unique solution to a BSDDE
(Backward Stochastic Differential-Difference Equation). First, it is presented by
employing the same approach as Skiadas [27] that under Assumption 1, for each
consumption process, the utility process of RDU is a unique solution to a BSDDE, if
there exists the unique solution to the BSDDE. Then the existence and uniqueness
of solutions to the BSDDE is proven by generalizing the approach of Schroder and
Skiadas [25] for an SDU under diffusion information.

3.1. An Expression for Discounted Relative Entropy. The discounted rela-
tive entropy R̃v,w

t defined by (2.6) is expressed as shown in Lemma 1, which extends
the results for Markovian jump-diffusion information (Anderson, Hansen, and Sar-
gent [2]) and for non-Markovian diffusion information (Lazrak and Quenez [21], and
Skiadas [27]).

Lemma 1. Let P v,w ∈ P̄. For every t ∈ T, R̃v,w
t is expressed as

R̃v,w
t = Ev,w

t

[∫ T

t

e−β(s−t)

{
1
2
‖vs‖2+

∫
Z

(
ws(z)

1 + ws(z)
+log(1+ws(z))

)
λv,w

s (dz)
}

ds

]
.

(3.1)

Proof. Applying integration by parts to (2.6) yields

R̃v,w
t = Ev,w

t

[∫ T

t

e−β(s−t)d
(
log

Λv,w
s

Λv,w
t

)]
∀t ∈ T. (3.2)

It follows from (2.5) that

log
Λv,w

s

Λv,w
t

=
∫ s

t

{
−1

2
‖vs′‖2 −

∫
Z

ws′(z)λs′(dz)
}

ds′

+
∫ s

t

vs′ · dWs′ +
∫ s

t

log(1 + ws′(z)) ν(ds′ × dz) ∀s ∈ [t, T ] (3.3)
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for every t ∈ T. It follows from Girsanov’s Theorem that a P v,w-Wiener process
W v,w and the P v,w-intensity kernel λv,w of ν satisfy

dWt = dW v,w
t + vt dt ∀t ∈ T, (3.4a)

λt(dz) =
λv,w

t (dz)
1 + wt(z)

∀(t, z) ∈ T × Z, (3.4b)

respectively. Substituting (3.4a) and (3.4b) into (3.3) yields

log
Λv,w

s

Λv,w
t

=
∫ s

t

{
1
2
‖vs′‖2 +

∫
Z

( −ws′(z)
1 + ws′(z)

+ log(1 + ws′(z))
)

λv,w
s′ (dz)

}
ds′

+
∫ s

t

vs′ · dW v,w
s′ +

∫ s

t

∫
Z

log(1 + ws′(z))
(
ν(ds′ × dz) − λv,w

s′ (dz) ds′
)
. (3.5)

for every t ∈ T and every s ∈ [t, T ]. Substituting (3.3) into (3.2) gives (3.1). �

3.2. Backward Stochastic Differential-Difference Equation Representa-
tion of RDU. It follows from expression (3.1) for discounted relative entropy that
Uv,w

t (C) given by (2.7) is rewritten as

Uv,w
t (C) = Ev,w

t

[∫ T

t

e−β(s−t)

{
f(Xs(C), Uv,w

s (C))

+
1
ζ

(
1
2
‖vs‖2 +

∫
Z

( −ws(z)
1 + ws(z)

+ log(1 + ws(z))
)

λv,w
s (dz)

)}
ds

]
, (3.6)

or equivalently

Uv,w
t (C) = Ev,w

t

[∫ T

t

{
fβ(Xs(C), Uv,w

s (C))

+
1
ζ

(
1
2
‖vs‖2 +

∫
Z

( −ws(z)
1 + ws(z)

+ log(1 + ws(z))
)

λv,w
s (dz)

)}
ds

]
. (3.7)

Let Dexp,α
λ (resp., D2

λ) denote the Banach space of P ⊗ Z-measurable real-
valued processes G (resp., H) with norm E[

∫ T

0

∫
Z
| exp(αGt(z))−1|2λt(dz) dt] (resp.,

E[
∫ T

0

∫
Z
|Ht(z)|2λt(dz) dt]). Let C ∈ C. Consider the following BSDDE

dUt(C) = −µU
t dt+σU

t ·dWt +
∫

Z

∆Ut−(z)
(
ν(dt×dz)−λt(dz) dt

)
, UT = 0 (3.8)

where σU ∈ ∏d
i=1 L2, and ∆U ∈ Dexp,−ζ

λ , and

µU
t = fβ(Xt(C), Ut(C))− ζ

2
‖σU

t ‖2−
∫

Z

(
1
ζ

(
e−ζ∆Ut−(z)−1

)
+∆Ut−(z)

)
λt(dz). (3.9)

The following proposition presents that if there exists a unique triplet (U, σU , ∆U)
in L∞ × L2 × Dexp,−ζ

λ to BSDDE (3.8), then Û(C) is the initial value5 of U . This
extends the result of Skiadas [27] in the case when the underlying utility is non-
recursive non-time-additive utility or SDU, and the information filtration is non-
Markovian diffusion information.

5To be exact, U0(C) is a random variable taking some specific value with probability one.
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Proposition 2. Let C ∈ C. Suppose that there exists a unique triplet (U, σU , ∆U) ∈
L∞ × L2 × Dexp,−ζ

λ satisfying BSDDE (3.8). Then Uv,w satisfies

Uv,w
t = Ut + Ev,w

t

[∫ T

t

(
fβ(Xs, U

v,w
s ) − fβ(Xs, Us) + Qv,w

s

)
ds

]
∀t ∈ T (3.10)

where

Qv,w
s =

1
ζ

{
1
2
‖vs + ζσU

s ‖2

+
∫

Z

( −ws(z)
1 + ws(z)

+ log(1 + ws(z)) +
e−ζ∆Us−(z) − 1

1 + ws(z)
+ ζ∆Us−(z)

)
λv,w

s (dz)
}

.

(3.11)

Furthermore, the minimizer of (2.9) is P v̂,ŵ where (v̂t, ŵt−(z)) = (−ζσU
t , e−ζ∆Ut−(z)−

1), and Û(C) = U0(C).

Proof. Substituting (3.4a) and (3.4b) into (3.8) gives BSDDE

dUt = −
{

fβ(Xt, Ut) −
(

ζ

2
‖σU

t ‖2 + σU
t · vt

)

−
∫

Z

(
1
ζ

e−ζ∆Ut−(z) − 1
1 + wt(z)

+ ∆Ut−(z)
)

λv,w
t (dz)

}
dt

+ σU
t · dW v,w

t +
∫

Z

∆Ut−(z)
(
ν(dt × dz) − λv,w

t (dz) dt
)
, ŨT = 0. (3.12)

It follows from (3.7) and Predictable Representation Property (see p. 239 in Brémaud [3])
that there exists a unique pair (σv,w , ∆Uv,w) ∈ ∏d

j=1 L2 × D2
λ such that Uv,w sat-

isfies BSDDE

dUv,w
t = −

{
fβ(Xt, U

v,w
t ) +

1
ζ

(
1
2
‖vt‖2 +

∫
Z

( −wt(z)
1 + wt(z)

+ log(1 + wt(z))
)
λv,w

t (dz)
)}

dt

+ σv,w
t · dW v,w

t +
∫

Z

∆Uv,w
t− (z)

(
ν(dt × dz) − λv,w

t (dz) dt
)

Uv,w
T = 0. (3.13)

Combining (3.12) with (3.13) yields

d(Ut − Uv,w
t ) =

[
fβ(Xt, U

v,w
t ) − fβ(Xt, Ut) +

1
ζ

{
1
2
‖vt + ζσU

t ‖2

+
∫

Z

( −wt(z)
1 + wt(z)

+log(1+wt(z))+
e−ζ∆Ut−(z) − 1

1 + wt(z)
+ζ∆Ut−(z)

)
λv,w

t (dz)
}]

dt+dMv,w
t

(3.14)

for every t ∈ T where

Mv,w
t = (σU

t − σv,w
t ) · dW v,w

t +
∫

Z

(
∆Ut(z)−∆Uv,w

t− (z)
) { ν(dt× dz)−λv,w

t (dz) dt}.

Equation (3.10) follows from (3.14). It is easy to see that Qv,w given by (3.11) is
nonnegative, and attains zero if and only if (vt, wt(z)) = (v̂t, ŵt(z)). It is obvious
that U v̂,ŵ

0 (C) = U0(C). Since fβ is Lipschitz in utility and X(C) ∈ L∞, the
integrand in the right hand side of (3.10) dominates −K |Ūs − Ū∗

s |+Qv,w
s for some

K ∈ R++, while Qv,w
s � 0. Therefore, by Lemma C.1, Uv,w

t � Ut P v,w-a.s. for
every t ∈ T. �
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3.3. Existence and Uniqueness. By Proposition 2, in order to show a sufficient
condition for the existence and uniqueness of RDU Û , it is enough to present
a sufficient condition for the existence and uniqueness of triplet (U, σU , ∆U) in
L∞ × L2 × Dexp,−ζ

λ satisfying BSDDE (3.8).
Let fζ(x, v) = −ζfβ(x,−ζ−1v), and C ∈ C. Consider the following BSDDE

dVt = −µV
t dt+σV

t ·dWt +
∫

Z

∆Vt−(z)
(
ν(dt×dz)−λt(dz) dt

)
, VT = 0 (3.15)

where σV ∈ ∏d
i=1 L2, and ∆V ∈ Dexp,1

λ , and

µV
t = fζ(Xt(C), Vt) +

1
2
‖σV

t ‖2 +
∫

Z

(
e∆Vt−(z)− 1 − ∆Vt−(z)

)
λt(dz).

It immediately follows from a simple rescaling that if (U, σU , ∆U) ∈ L∞ × L2 ×
Dexp,−ζ

λ satisfies BSDDE (3.8) then (V, σV , ∆V ) := (−ζU,−ζσU ,−ζ∆U) ∈ L∞ ×
L2 × Dexp,1

λ satisfies BSDDE (3.15), and conversely if (V, σV , ∆V ) ∈ L∞ × L2 ×
Dexp,1

λ satisfies (3.15) then (U, σU , ∆U) := (−ζ−1V,−ζ−1σV ,−ζ−1∆V ) ∈ L∞ ×
L2×Dexp,−ζ

λ satisfies (3.8). It shall be shown that there exists a unique (V, σV , ∆V ) ∈
L∞×L2 ×Dexp,1

λ satisfying BSDDE (3.15). To do so, consider the following recur-
sion

Vt = log
(

Et

[
exp

(∫ T

t

fζ(Xs(C), Vs) ds
)])

∀t ∈ T. (3.16)

The following lemma is a jump-diffusion information version of Lemma A.1
shown by Schroder and Skiadas [25].

Lemma 2. For any V ∈ L∞, the following statements are equivalent:

(a) There exists a unique (σV , ∆V ) ∈ L2×Dexp,1
λ such that (V, σV , ∆V ) satisfies

(3.15).
(b) There exists some (σV , ∆V ) ∈ L2 × Dexp,1

λ such that (V, σV , ∆V ) satisfies
(3.15).

(c) V satisfies (3.16).

Proof. See Appendix D.1. �

The following lemma extends Lemma A.3 of Schroder and Skiadas [25] in the
case when fβ(x, u) = v(x)−βu and fζ is decreasing in utility, which is not assumed
to hold in this paper.

Lemma 3. Under Assumption 1, there exists a unique solution in L∞ to recursion
(3.16).

Proof. Let C ∈ C. Define a mapping F : L∞ → L∞ by

Ft(V ) = log
(

Et

[
exp

(∫ T

t

fζ(Xs(C), Vs) ds
)])

∀t ∈ T.

It suffices to present that F is well-defined and has a unique fixed point. Schroder
and Skiadas [25] show it by utilizing the propoerty that fζ is decreasing in utility.
This property, however, is not assumed to hold in this paper. Since by Assump-
tion 1, fζ satisfies the Lipschitz condition in utility and the generalized growth
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condition in consumption, and X(C) is in L∞, it follows that for each t ∈ T,

|fζ(Xs(C), Vs)| � ζ
∣∣(fβ(Xs(C),−ζ−1Vs) − fβ(Xs(C), 0)

)∣∣ +
∣∣ζfβ(Xs(C), 0)

∣∣
� ess sup

(ω,s)∈Ω×T

k1(Xs(C)) |Vs| + ess sup
(ω,s)∈Ω×T

ζ k2(Xs(C)) � K1‖V ‖L∞ + K2

for some (K1, K2) ∈ R
2
++, and hence, Ft(V ) � (K1‖V ‖L∞ + K2)(T − t). Thus,

F (V ) ∈ L∞, and F : L∞ → L∞ is well-defined. Let (V, Ṽ ) ∈ L∞ × L∞. The
process F (V ) is evaluated as follows:

Ft(V ) = log
(

Et

[
exp

(∫ T

t

fζ(Xs(C), Vs) ds
)])

= log
(

Et

[
exp

(∫ T

t

(
fζ(Xs(C), Ṽs) + fζ(Xs(C), Vs) − fζ(Xs(C), Ṽs)

)
ds

)])

� log
(

Et

[
exp

(∫ T

t

(
fζ(Xs(C), Ṽs) + ess sup

(ω,s)∈Ω×T

k1(Xs(C)) |Vs − Ṽs|
)

ds

)])

= Ft(Ṽ ) + K(T − t)‖V − Ṽ ‖L∞

where K = ess sup(ω,s)∈Ω×T k1(Xs(C)). Interchanging the roles of V and Ṽ yields
Ft(Ṽ ) � Ft(V )+K(T−t)‖V −Ṽ ‖L∞ . Hence, |Ft(V )−Ft(Ṽ )| � K(T−t)‖V −Ṽ ‖L∞ .
Therefore, it is shown in the same way as the proof of Proposition 1 that F is a
contraction mapping, and has a unique fixed point. �

The following theorem follows from Proposition 2 and Lemma 2 and 3, and
generalizes the result of Skiadas [27] in the case when the underlying utility is non-
recursive non-time-additive utility, and the information filtration is non-Markovian
diffusion information.

Theorem 1. Under Assumption 1, the RDU Û defined by (2.9) is well-defined,
and for every C ∈ C, Û(C) = U0(C) where U0(C) is the initial value of the unique
solution Ut(C) in L∞ to BSDDE (3.8).

4. Normalization of RDU

This section reveals that under Assumption 1, the RDU Û can be normalized,
and exhibits its normalized representation.

Since ‖σt‖2 is the derivative of the quadratic variation [U ] of U , let d[U ]t/dt :=
‖σt‖2. Then the utility process Ut(C) satisfying BSDDE (3.8) has the following
SDU-like representation

Ut(C) = Et

[∫ T

t

{
fβ(Xs(C), Us(C))−ζ

2
d[U ]s
ds

−
∫

Z

(1
ζ

(
e−ζ∆Us−(z)−1

)
+∆Us−(z)

)
λs(dz)

}
ds

]
(4.1)

for every t ∈ T where fβ(x, u) = f(x, u) − βu, or equivalently

Ut(C) = Et

[∫ T

t

e−β(s−t)

{
f(Xs(C), Us(C)) − ζ

2
d[U ]s
ds

−
∫

Z

(1
ζ

(
e−ζ∆Us−(z) − 1

)
+ ∆Us−(z)

)
λs(dz)

}
ds

]
(4.2)

for every t ∈ T. It is easy to see that in each of these representations, the sec-
ond term is a penalty to the continuous variation of the utility process, and the
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parameter ζ works as its multiplier. For the third term, the following inequalities
hold:

1
ζ

(
e−ζ∆Us−(z) − 1

)
+ ∆Us−(z) � 0,

∂

∂ζ

(1
ζ

(
e−ζ∆Us−(z) − 1

)
+ ∆Us−(z)

)
=

1
ζ2

(
1 − (1 + ζ∆Us−(z))e−ζ∆Us−(z)

)
� 0,

where equalities hold if and only if ∆Us−(z) = 0. Thus, the third term is a penalty
to the jump variation of the utility process, and ζ works as its multiplier. These rep-
resentations are intuitively comprehensible, but not so analytically intractable. To
obtain a more analytically tractable representation of SDU, Duffie and Epstein [9]
considers its ordinally equivalent utility defined as follows. A utility Ū : C → R is
said to be ordinally equivalent to a utility U : C → R if and only if there exists
a strictly increasing C2-function ϕ : R → R with ϕ(0) = 0 such that Ū = ϕ ◦ U .
Then the notion of normalizable RDU is defined by the following.

Definition 2. An RDU U : C → R with characteristic (fβ, X, ζ) is normalizable
if and only if there exists an ordinally equivalent transform ϕ such that for every
C ∈ C, Ūt(C) := ϕ(Ut(C)) is a solution in L∞ to the recursion

Ūt(C) = Et

[∫ T

t

g(Xs(C), Ūs(C)) ds

]
∀t ∈ T (4.3)

where g is given by g(x, ū) = ϕ′(ū)fβ(x, ū).

The pair (g, X) or the function g is called the aggregator. Skiadas [27] derives the
normalized robust dynamic utility under diffusion information because any SDU is
normalizable under diffusion information (Duffie and Epstein [9]). However, this
does not apply to the case of jump-diffusion information. Recently, Kusuda [19]
has presented a necessary and sufficient condition for an SDU to be normalizable
under jump-diffusion information. For each C ∈ C, define a utility process by
Ū(C) = ϕ(U(C)) where ϕ is an increasing function given by

ϕ(u) =
1
ζ
(1 − e−ζu). (4.4)

The following proposition immediately follows from the result of Kusuda [19], and
extends the result of Skiadas [27] in the case when the underlying utility is non-
recursive non-time-additive utility, i.e, fβ(x, u) = v(x) − βu, and the information
filtration is non-Markovian diffusion information.

Proposition 3. Under Assumption 1, any RDU U : C → R with characteristic
(fβ, X, ζ) is normalizable, and the normalized RDU Ū has the aggregator g of the
form

g(x, ū) = (1 − ζū) fβ
(
x,−1

ζ
log(1 − ζū)

)
= (1 − ζū)

(
f
(
x,−1

ζ
log(1 − ζū)

)
+

β

ζ
log(1 − ζū)

)
,

(4.5)

and satisfies ess sup(ω,t)∈Ω×T Ūt(C) < ζ−1 for every C ∈ C.
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Proof. Note that the following equations hold:

ϕ′(u) = e−ζu ∀u, (4.6a)

ϕ′′(u) = −ζ ϕ′(u) ∀u, (4.6b)

ϕ′(u)fβ(x, u) = g(x, ϕ(u)) ∀(x, u), (4.6c)

Applying Ito’s Formula to Ūt = ϕ(Ut) yields BSDDE

dŪt = −µŪ
t dt + ϕ′(Ut−)σU

t · dWt

+
∫

Z

(
ϕ(Ut−+ ∆Ut−(z)) − ϕ(Ut−)

) (
ν(dt × dz) − λt(dz) dt

)
, ŪT = ϕ(0) = 0

(4.7)

where

µŪ
t = ϕ′(Ut−)

(
µU

t− +
∫

Z

∆Ut−(z)λt(dz)
)
− 1

2
ϕ′′(Ut−) ‖σU

t ‖2

−
∫

Z

(
ϕ(Ut−+ ∆Ut−(z)) − ϕ(Ut−)

)
λt(dz). (4.8)

It is confirmed that ϕ′(Ut−)σU
t ∈ ∏d

j=1 L2 and (ϕ(Ut−+ ∆Ut−(z)) − ϕ(Ut−)) ∈ D2
λ.

Substituting (3.9) into (4.8) gives

µŪ
t = ϕ′(Ut−)fβ(Xt−, Ut−) − ζ

2
ϕ′(Ut−) ‖σU

t ‖2

− ϕ′(Ut−)
∫

Z

(
1
ζ
(e−ζ∆Ut−− 1) − ∆Ut−(z)

)
λt(dz)

− 1
2

ϕ′′(Ut−) ‖σU
t ‖2 −

∫
Z

(
ϕ(Ut−+ ∆Ut−(z)) − ϕ(Ut−) − ϕ′(Ut)∆Ut−(z)

)
λt(dz)

= ϕ′(Ut−)fβ(Xt−, Ut−) − 1
2

(
ζ ϕ′(Ut−) + ϕ′′(Ut−)

) ‖σU
t ‖2

+
∫

Z

∫ Ut−+∆Ut−(z)

Ut−

(
ϕ′(Ut−)e−ζ(u−Ut−) − ϕ′(u)

)
du λt(dz).

(4.9)

Substituting (4.6a)-(4.6c) into (4.9) yields µŪ
t = g(Xt−, Ūt−), and therefore the

normalized representation (4.3). Since Ut(C) ∈ L∞ and Ūt(C) = ζ−1(1−e−ζUt(C)),
esssup(ω,t)∈Ω×T Ūt(C) < ζ−1. �

Example 5. Consider the RDU such that the underlying dynamic utility is non-
recursive habit formation utility, i.e, Ct =

∫ t

0 csds, Xt(C) = (ct, xt), and fβ(c, x, u) =
v(c − x) − βu. Then the aggregator of the corresponding robust utility is of the
form

g(c, x, ū) = (1 − ζū)
(
v(c − x) +

β

ζ
log(1 − ζū)

)
.

In particular, if there is no habit-forming effect and v(c) = log(c) then the RDU is
a Kreps-Porteus utility (Kreps and Porteus [18]) studied by Duffie and Epstein [9]
and Schroder and Skiadas [25], although in the Kreps-Porteus utility, ζ is a measure
of comparative risk aversion.
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Example 6. Consider the RDU such that the underlying dynamic utility is the
Kreps-Porteus habit formation whose aggregator is of the form

fβ(c, x, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − α)
(

(c − x)γ

γ
|u| α

α−1 − βu

)
if γ �= 0,

(1 − αu)
(
log(c − x) +

β

α
log(1 − αu)

)
if γ = 0.

Then the aggregator of the corresponding robust utility is of the form

g(c, x, ū)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − α) (1 − ζū)
(

(c − x)γ

γ

∣∣∣1
ζ

log(1 − ζū)
∣∣∣ α

α−1
+

β

ζ
log(1 − ζū)

)
if γ �= 0,

(1 − ζū)
(
1 +

α

ζ
log(1 − ζū)

)(
log(c − x) +

β

α
log

(
1 +

α

ζ
log(1 − ζū)

))
if γ = 0.

5. Basic Properties

This section exmines the RDU’s basic properties including time consistency, pref-
erences for information, monotonicity, and “ambiguity aversions.” Time consistency
and monotonicity are presented by generalizing results of Duffie and Epstein [9] for
normalized SDUs. Preferences for information are analyzed by exploiting the result
of Skiadas [26]. “Ambiguity aversions” are examined by mainly adopting the no-
tions advocated by Epstein [11], Epstein and Zhang [13], and Chen and Epstein [5].

5.1. Time Consistency and Preferences for Information. Duffie and Ep-
stein [9] show that any SDU with aggregator satisfying the uniform Lipschitz con-
dition is time consistent (for definition, see Duffie and Epstein [9]). Skiadas [26]
presents that if an SDU aggregator with the uniform Lipschitz condition is con-
vex (resp., concave) in utility, the SDU is information seeking (resp., information
averse) (for definitions, see Skiadas [26]). It is easily found that in their proofs,
the uniform Lipschitz condition can be replaced with the quasi-Lipschitz condition
defined in the following lemma.

Lemma 4. Under Assumption 1, the aggregator g defined by (4.5) satisfies the
generalized growth condition in consumption and the following condition:

Quasi-Lipschitz condition in utility: Let C ∈ C and (U, Ũ) ∈ L∞ × L∞

such that ess sup(ω,t)∈Ω×T max{Ut, Ũt} < ζ−1. There exists K ∈ R++ such
that

|g(Xt(C), Ut) − g(Xt(C), Ũt)| � K|Ut − Ũt| ∀(ω, t) ∈ Ω × T.

Proof. See Appendix D.2. �

Proposition 4. Any RDU Û with characteristic (fβ , X, ζ) satisfying Assumption 1
is time consistent. In addition, if (−ζfβ

u +fβ
uu) is non-negative (resp., non-positive),

then Û is information seeking (resp., information averse), where fβ
u and fβ

uu are
the first and the second partial derivatives of fβ with respect to utility, respectively.
In particular, if the underlying utility is a non-recursive utility, i.e., fβ(ω, t, x, u) =
v(x) − βu, then Û is information seeking.
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Proof. Time consistency follows from Proposition 4 in Duffie and Epstein [9] and
Lemma 4. For proof of preferences for information, by Proposition A in Skiadas [26]
and Lemma 4, it is engouh to show the claim that the sign of gūū coincides with
that of (−ζfβ

u + fβ
uu). It follows that gū = −ζfβ + fβ

u , and then gūū = (1 −
ζū)(−ζfβ

u + fβ
uu). The claim was, therefore, shown. Let fβ(ω, t, x, u) = v(x) − βu.

Then −ζfβ
u + fβ

uu = βζ ≥ 0, and then Û is information seeking. �

5.2. Monotonicity. A characteristic (fβ, X, ζ) or an aggregator (g, X) is said to
be regular if and only if Assumption 1 and the following condition holds:

• (fβ , X) is increasing in consumption process, which means that for every
(C, C̃) ∈ C × C with C � C̃, fβ(Xt(C), u) � fβ(Xt(C̃), u) for every (t, u) ∈
T × R, P -a.s.

Note that if (fβ , X) is increasing in consumption process then so is (g, X).

Proposition 5. Any RDU with regular aggregator is increasing.

Proof. Let Ū be an RDU with regular aggregator (g, X). Let (C, C̃) ∈ C × C with
C � C̃. Let ŪC := Ū(C) and Ū C̃ := Ū(C̃). It follows that for every t ∈ T,

ŪC
t − Ū C̃

t = Et

[∫ T

t

(
g(XC

s , ŪC
s ) − g(X C̃

s , Ū C̃
s )

)
ds

]
,

and since g is quasi-Lipschitz in utility and (g, X) is increasing in consumption
process, the integrand of the above equation is evaluated as

g(XC
s , ŪC

s )−g(X C̃
s , Ū C̃

s ) � g(XC
s , ŪC

s )−g(X C̃
s , ŪC

s )−K |ŪC
s −Ū C̃

s | � −K |ŪC
s −Ū C̃

s |
for some K ∈ R++. The result follows by Lemma C.1. �

5.3. Comparative Ambiguity Aversion. Through this subsection, agents are
assumed to have the common reference probability P .

A characteristic (fβ, X, ζ) or an aggregator (g, X) is said to be event-independent
if and only if the following conditions hold:

(a) fβ does not depend on ω ∈ Ω.
(b) X does not depend on ω ∈ Ω and X(C) is a deterministic process for every

deterministic consumption process C ∈ C.
The following lemma is useful for comparing two utilities.

Lemma 5. Let C ∈ C. Suppose that a utility process Ut(C) satisfies BSDDE (3.8),
and that U∗ := U∗(C) satisfies BSDDE

dU∗
t = −µU∗

t dt + σU∗
t · dWt +

∫
Z

∆U∗
t−(z) { ν(dt × dz) − λt(dz) dt }, U∗

T = 0

where σU∗∈ ∏d
j=1 L2, ∆U∗∈ Dexp,−ζ∗

λ , and

µU∗
t = fβ(Xt, U

∗
t ) − ζ∗

2
‖σU∗

t ‖2 −
∫

Z

∫ ∆U∗
t−(z)

0

(
1 − e−ζ∗u

)
du λt(dz).

Let ϕ be the ordinally equivalent transform defined by (4.4) and Ū∗ := ϕ(U∗). Then
Ū∗ satisfies

Ū∗
t = Et

[∫ T

t

{
g(Xs, Ū

∗
s ) − Zs(U∗, ζ∗, ζ)

}
ds

]
(5.1)
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where

Zs(U∗, ζ∗, ζ) =
1
2
(ζ∗ − ζ)ϕ′(U∗

s ) ‖σŪ∗
s ‖2

+ ϕ′(U∗
s−)

∫
Z

∫ ∆U∗
s−(z)

0

(
1 − e−(ζ∗−ζ)u

)
du λs(dz). (5.2)

Furthermore, Z(U∗, ζ∗, ζ) � 0.

Proof. Applying Ito’s Formula to Ū∗ := ϕ(U∗) yields (5.1) and (5.2). It is easy to
see that Z(U∗, ζ∗, ζ) � 0. �

Chen and Epstein [5] define the notion of comparative ambiguity aversion in the
following way (for formal arguments, see Epstein [11] and Epstein and Zhang [13]).
An event A ∈ FT is said to be unambiguous if and only if P̃ (A) = P (A) for every
P̃ ∈ P. Let Ā denote the class of unambiguous events. Let Āt := Ā ∩ Ft for
every t ∈ T. A consumption process C is said to be unambiguous if and only if
Ct is Āt-measurable for every t ∈ T. Let CĀ denote the set of all unambiguous
consumption processes. The notion of comparative ambiguity aversion is defined in
the following.

Definition 3. Let Û and Û∗ be RDUs with corresponding classes Ā and Ā∗ of
unambiguous events. It is said that Û∗ is more ambiguity averse than Û if and only
if Ā ⊃ Ā∗ and for every consumption process C ∈ C and every Ā∗-unambiguous
consumption process C∗ ∈ CĀ∗ , the following holds:

Û(C) � Û(CĀ∗
) =⇒ Û∗(C) � Û∗(CĀ∗

).

The condition Ā ⊃ Ā∗ in the definition of comparative ambiguity aversion,
means that the more ambiguous averse agent views more events as ambiguous.

It must be noted that in this paper’s setting, clearly an event is unambiguous if
and only if the event is deterministic. Therefore, the set Ā of unambiguous events
coincides with the set of deterministic events, and the set CĀ of unambiguous con-
sumption processes coincides with the set of deterministic processes.6 The following
lemma shows that in the case when the consumption set is restricted to the set of
unambiguous consumption processes (or equivalently, for the set of deterministic
consumption processes), any RDU with regular event-independent characteristic is
the corresponding dynamic utility.

Lemma 6. Let Û be an RDU with regular event-independent characteristic (fβ , X, ζ).
For any CĀ ∈ CĀ, Û(CĀ) = U0(CĀ) where U0(CĀ) is a unique solutiton in L∞ to
the recursion

Ut(CĀ) =
∫ T

t

fβ(Xs(CĀ), Us(CĀ)) ds ∀t ∈ T. (5.3)

Proof. See Appendix D.3. �
Consider an agent with an RDU whose characteristic (f, X, β, ζ) is regular and

event-independent. The following proposition demonstrates that the larger the
parameter ζ is, the more ambiguous averse the agent is.

6Chen and Epstein [5] present the κ-ignorance multiple-priors utility in which the set of the de-
terministic events is a proper subset of unambiguous events (for details, see Chen and Epstein [5]).
The RDU also can be generalized in the same way, but the generalized RDU would be no longer
normalizable.
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Proposition 6. Let Û and Û∗ be RDUs with corresponding characteristics (f, X, β, ζ)
and (f∗, X∗, β∗, ζ∗) such that (f, X, β, ζ) is regular and event-independent. Suppose
that (f∗, X∗, β∗) = (f, X, β). Then if ζ∗ � ζ, then Û∗ is more ambiguity averse
than Û .

Proof. It is obvious that Ā = Ā∗. By Lemma 6, Ût(CĀ∗
) = Û∗

t (CĀ∗
) for every

CĀ ∈ CĀ. Thus, Û∗ is more ambiguity averse than Û if and only if for every C ∈ C,
Û(C) � Û∗(C). Let C ∈ C. Let ϕ be the ordinally equivalent transform defined
by (4.4), and let Ū = ϕ(Û ) and Ū∗ = ϕ(Û∗). Assume ζ∗ > ζ. It is sufficient
to show that Ū(C) � Ū∗(C). The transform ϕ normalizes Û to the normalized
representation Ū of the form (4.3). Since ζ∗ > ζ, it follows from Lemma 5 that
Ū∗ := Ū∗(C) satisfies

Ū∗
t = Et

[∫ T

t

{
g(Xs, Ū

∗
s ) − Zs(Û∗, ζ∗, ζ)

}
ds

]
t ∈ T (5.4)

where Z(Û∗, ζ∗, ζ) is given by (5.2). Subtracting (4.3) from (5.4) yields

Ūt − Ū∗
t = Et

[∫ T

t

{
g(Xs, Ūs) − g(Xs, Ū

∗
s ) + Zs(Û∗, ζ∗, ζ)

}
ds

]
∀t ∈ T. (5.5)

Since g is quasi-Lipschitz in utility, the integrand dominates −K |Ūs − Ū∗
s | +

Zs(Û∗, ζ∗, ζ) for some K ∈ R++, while Zs(Û∗, ζ∗, ζ) � 0. Then it follows from
Lemma C.1 that Ū(C) � Ū∗(C). �

5.4. Absolute Ambiguity Aversion. In order to define the absolute ambiguity
aversion of a utility, Chen and Epstein [5] introduced the notion of probabilistically
sophisticated utility for timeless prospects (for definition, see Chen and Epstein [5])
as “ambiguity neutral” utility because the well known notion of “probabilistically
sophisticated utility” introduced by Machina and Schmeidler [23], is not appropriate
in a dynamic setting (for details, see Chen and Epstein [5]). In this paper, the
following notion is introduced.

Definition 4. The ambiguity neutral version of an RDU with characteristic (fβ , X, ζ)
is the dynamic utility with characteristic (fβ , X).

It is easily conjectured that an RDU with characteristic (fβ , X, ζ) is probabilis-
tically sophisticated utility for timeless prospects if and only if the characteristic is
(fβ, X, 0+), but it is beyond the scope of this paper to explore the conjecture.

The meaning of the following definition is intuitively clear, which states that
an RDU is ambiguity averse if and only if whenever its ambiguity neutral ver-
sion rejects an ambiguous consumption plan against an unambiguous consumption
plan, the RDU rejects the ambiguous consumption plan against the unambiguous
consumption plan.

Definition 5. An RDU is ambiguity averse if and only if the RDU is more ambi-
guity averse than its ambiguity neutral version.

It immediately follows from Proposition 6 that any RDU with regular event-
independent characteristic is ambiguity averse.

Proposition 7. Any RDU with regular event-independent characteristic is ambi-
guity averse.
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Appendix A. Marked Point Process

A.1. Definitions. A double sequence (sn, Zn)n∈N is considered, where sn is the
occurrence time of an nth jump and Zn is a random variable taking its values on a
measurable space (Z,Z) at time sn. Define a random counting measure ν(dt× dz)
by

ν([0, t] × A) =
∑
n∈N

1{sn�t, Zn∈A} ∀(t, A) ∈ T ×Z.

This counting measure ν(dt × dz) is called the Z-marked point process.
Let λ be such that
(a) For every (ω, t) ∈ Ω×T, the set function λt(ω, · ) is a finite Borel measure

on Z.
(b) For every A ∈ Z, the process λ(A) is P-measurable and satisfies λ(A) ∈ L1.

The marked point process ν(dt×dz) is said to have the P -intensity kernel λt(dz) if
and only if the equation E

[∫ T

0 Ys ν(ds × A)
]

= E
[∫ T

0 Ysλs(A) ds
]

holds for every
A ∈ Z and for every nonnegative P-measurable process Y .

A.2. Integration Theorem. Let ν(dt×dz) be a Z-marked point process with the
P -intensity kernel λt(dz). Let H be a P ⊗ Z-measurable function. It follows that:

(a) If the integrability condition E
[∫ T

0

∫
Z
|Hs(z)|λs(dz) ds

]
< ∞ holds, then

the process
∫ t

0

∫
Z

Hs(z)
(
ν(ds × dz) − λs(dz) ds

)
is a P -martingale.

(b) If H ∈ L1(λt(dz)×dt), then the process
∫ t

0

∫
Z

Hs(z)
(
ν(ds×dz)−λs(dz) ds

)
is a local P -martingale.

Proof. See p. 235 in Brémaud [3]. �

Appendix B. Ito’s Formula and Girsanov’s Theorem

B.1. Ito’s Formula. Let X be a n-dimensional semimartingale. Then for any
C1,2-function g : T × R

n → R, g(t, X) is a semimartingale of the form

g(t, Xt) = g(0, X0) +
∫ t

0

∂

∂s
g(s, Xs) ds

+
n∑

j=1

∫ t

0

∂

∂xj
g(s−, Xs−) dXj

s +
1
2

n∑
j=1

n∑
k=1

∫ t

0

∂2

∂xj∂xk
g(s−, Xs−) d〈Xjc, Xkc〉

+
∑

0�s�t

{
g(s−, Xs) − g(s−, Xs−) −

d∑
j=1

∂

∂xj
g(s−, Xs−)∆Xj

s

}

where Xjc is the continuous part of Xj and 〈Xjc, Xkc〉 is quadratic covariation of
Xjc and Xkc.

B.2. Girsanov’s Theorem. Let (Ω,F , F, P ) the complete filtered probability space
given in this paper.

(a) Let v ∈ ∏d
j=1 L2 and w ∈ L1(λt(dz) × dt) such that wt(z) > −1 P -a.s. for

every (t, z) ∈ T × Z. Define a process Λ by

dΛt

Λt−
= vt · dWt +

∫
Z

wt(z)
(
ν(dt × dz) − λt(dz) dt

) ∀t ∈ T
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with Λ0 = 1, and suppose E [ΛT ] = 1. Then there exists a probability
measure P̃ on (Ω,F , F) given by the Radon-Nikodym derivative

dP̃ = ΛT dP

such that:
(i) The measure P̃ is equivalent to P .
(ii) The process given by W̃t = Wt −

∫ t

0 vs ds for every t ∈ T, is a P̃ -
Wiener process.

(iii) The marked point process ν(dt × dz) has the P̃ -intensity kernel such
that λ̃t(dz) = (1 + wt(z))λt(dz) for every (t, z) ∈ T × Z.

(b) Every probability measure equivalent to P has the structure above.

Appendix C. Extension of Gronwall-Bellman Inequality

Let (Ω,F , F, P ) be a filtered probability whose filtration F := (Ft)t∈T satisfies
the usual conditions. The following lemma is an extension of Gronwall-Bellman
Inequality, shown by Skiadas in Duffie and Epstein [9].

Lemma C.1. Suppose that Y and Z are integrable optional processes, and K ∈
R++. Suppose that the map defined by s �→ Ys is right continuous, and that the
map defined by s �→ Et[Ys] is continuous P -a.s. for every t ∈ T. If YT � 0 P -a.s.,
and for every t ∈ T, Yt = Et[

∫ T

t
Zs ds + YT ] P -a.s., and Zt � −K|Yt| P -a.s., then

Yt � 0 P -a.s. for every t ∈ T.

Proof. See Duffie and Epstein [9]. �

Appendix D. Proofs

D.1. Proof of Lemma 2. The proof of Schroder and Skiadas [25] for diffusion
information, is extended to jump-diffusion information.

(c) ⇒ (b). Suppose that (c) holds. Define the process Y by Yt = exp(Vt). Then
the following holds:

Yt = exp
(
−

∫ t

0

fζ(Xs(C), Vs) ds

)
Mt ∀t ∈ T (D.1)

where M is the martingale given by

Mt = Et

[
exp

(∫ T

0

fζ(Xs(C), Vs) ds

)]
. (D.2)

By Predictable Representation Property, there exists a unique pair (σM , ∆M) ∈
L2 × D2

λ such that

dMt = σM
t · dWt +

∫
Z

∆Mt−(z)
(
ν(dt × dz) − λt(dz) dt

)
.

Define processes vY and wY by vY
t = M−1

t σM
t and wY

t (z) = M−1
t ∆Mt(z), respec-

tively. It follows from (D.1) that log Mt = Vt +
∫ t

0 fζ(Xs(C), Vs) ds. Since Vt and
fζ(Xt(C), Vt) are in L∞, log M ∈ L∞, and thus, (vY , wY ) ∈ L2 × D2

λ. Applying
integration by parts to Yt yields

dYt

Yt−
= −fζ(Xt(C), Vt) dt + vY

t · dWt +
∫

Z

wY
t−(z)

(
ν(dt × dz) − λt(dz) dt

)
. (D.3)
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Let (σV , ∆V ) = (vY , log(1 + wY )). Since (vY , wY ) ∈ L2 × D2
λ, (σV , ∆V ) ∈ L2 ×

Dexp,1
λ . Applying Ito’s Formula to Vt = log(Yt) gives (3.15).
(b) ⇒ (c). Suppose that (V, σV , ∆V ) satisfies (3.15), and define Y by Yt =

exp(Vt). By Ito’s Formula, Y satisfies (D.3). Let M be the stochastic exponential
of (σV , e∆V − 1), i.e., Mt is the unique local martingale satisfying

dMt

Mt−
= σV

t · dWt +
∫

Z

(
e∆Vt−(z) − 1

) (
ν(dt × dz) − λt(dz) dt

) ∀t ∈ T,

and M0 = 1. Then, M is a martingale. Applying integration by parts to Mt yields
(D.1), and (3.16) then follows from (D.1).

(a) ⇔ (b). Clearly, (a) implies (b). Suppose that (b) holds, and let Yt =
exp(Vt). Then σV and ∆V represent the diffusion term and the jump term of Ito
Decomposition of dYt/Yt−, respectively, and is uniquely determined in L∞×Dexp,1

λ .

D.2. Proof of Lemma 4. First, since g(x, 0) = fβ(x, 0), g satisfies the generalized
growth condition. Let C ∈ C and (U, Ũ) ∈ L∞ × L∞ such that ess sup(ω,t)∈Ω×T

max{Ut, Ũt} < ζ−1. Let X := X(C). The following holds:

g(Xt, Ut) − g(Xt, Ũt)

= (1 − ζUt)
(
fβ

(
Xt,−ζ−1 log(1 − ζUt)

) − fβ
(
Xt,−ζ−1 log(1 − ζŨt)

))
+ ζfβ

(
Xt,−ζ−1 log(1 − ζŨt)

)
(Ut − Ũt), (D.4)

or

g(Xt, Ut) − g(Xt, Ũt)

= (1 − ζŨt)
(
fβ

(
Xt,−ζ−1 log(1 − ζUt)

) − fβ
(
Xt,−ζ−1 log(1 − ζŨt)

))
+ ζfβ

(
Xt,−ζ−1 log(1 − ζUt)

)
(Ũt − Ut). (D.5)

It follows from Assumption 1 and 0 � log(1 + x) � x for every x ∈ [0,∞) that the
term fβ(Xt,−ζ−1 log(1 − ζUt)) − fβ(Xt,−ζ−1 log(1 − ζŨt)) is evaluated as

|fβ
(
Xt,−ζ−1 log(1 − ζUt)

) − fβ
(
Xt,−ζ−1 log(1 − ζŨt)

)|

� k1(Xt)
∣∣∣−ζ−1 log

(1 − ζUt

1 − ζŨt

)∣∣∣ �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1(Xt)
1 − ζUt

(Ũt − Ut) if Ut � Ũt

k1(Xt)
1 − ζŨt

(Ut − Ũt) if Ut > Ũt

(D.6)

It follows by Assumption 1 and ess sup(ω,t)∈Ω×T max{Ũt, Ut} < ζ−1 that fβ(Xt,−ζ−1

log(1−ζŨt)) and fβ(Xt,−ζ−1 log(1−ζUt)) are bounded. Therefore, it follows from
(D.4), (D.5), and (D.6) that the quasi-Lipschitz condition holds.

D.3. Proof of Lemma 6. Since (fβ, X, ζ) is event-independent, it follows from
(5.3) that Ut := Ut(CĀ) satisfies the backward ordinary differential equation

dUt = −fβ(Xt, Ut) dt, UT = 0. (D.7)

It follows from (3.6) and Predictable Representation Property that there exists
a unique pair (σv,w , ∆Uv,w) ∈ L2 × D2

λ such that Uv,w := Uv,w(CĀ) satisfies
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BSDDE (3.13). Combining (D.7) with (3.13) gives

d(Ut − Uv,w
t ) =

[
fβ(Xt, U

v,w
t ) − fβ(Xt, Ut) +

1
ζ

{
1
2
‖vt‖2

+
∫

Z

( −wt(z)
1 + wt(z)

+ log(1 + wt(z))
)

λv,w
t (dz)

}]
dt + dMv,w

t (D.8)

where

Mv,w
t = −σv,w

t · dW v,w
t −

∫
Z

∆Uv,w
t− (z) { ν(dt × dz) − λv,w

t (dz) dt}.

Thus, Uv,w satisfies

Uv,w
t = Ut + Ev,w

t

[∫ T

t

{
fβ(Xs, U

v,w
s ) − fβ(Xs, Us) + Qv,w

s

}
ds

]
∀t ∈ T

where

Qv,w
s =

1
ζ

{
1
2
‖vs‖2 +

∫
Z

( −ws(z)
1 + ws(z)

+ log(1 + ws(z))
)

λv,w
s (dz)

}
.

Since fβ is Lipschitz in utility and X(C) ∈ L∞, the integrand dominates −K |Ūs −
Ū∗

s | + Qv,w
s for some K ∈ R++, while Qv,w

s � 0. Thus, by Lemma C.1, Ut � Uv,w
t

a.s. for every t ∈ T, and therefore, Û(CĀ) = U0(CĀ).
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