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Abstract. The LIBOR market (LM) model (Brace, Gatarek, and Musiela [8],
Miltersen, Sandmann, Sondermann [21], and Jamshidian [18]) is a Heath-
Jarrow-Morton model (Heath, Jarrow, and Morton [15]) specified to be an
interest rate version of the celebrated Black-Scholes model of stock price, and
is the most popular among practitioners and researchers. However, a statistical
test (Kusuda [19]) rejected the LM model, and suggested that the determinis-
tic volatility in the LIBOR market model should be replaced with a stochastic
one and/or that a jump process should be introduced into the LM model. This
paper presents a stochastic volatility jump-diffusion LM model using a gen-
eral equilibrium security market model of Kusuda [19]. Approximate general
equilibrium pricing formulas for caplet and swaption are derived exploiting the
forward martingale measure approach (Jamshidian [17]) and a Fourier trans-
form method (Heston [16], Bates [4], and Duffie, Pan, and Singleton [13]).
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adviser Professor Jan Werner for his invaluable advice. I am grateful for comments of participants
of presentations at Japanese Economic Association of Financial Econometrics and Engineering
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1. Introduction

In international financial markets, most interest rate related contracts refer to
LIBOR (London InterBank Offered Rate1) rates, forward LIBOR rates, swap rates
(a long term version of LIBOR rates), and forward swap rates. The two most fre-
quently traded interest rate derivatives, i.e. a caplet and a swaption, are a European
option on a forward LIBOR rate and on a forward swap rate, respectively. It seems
reasonable to suppose that an ideal interest rate derivative pricing model should
possess the following two properties: (i) Arbitrage-free pricing formulas for caplet
and swaption are derived in the model. (ii) The model is statistically acceptable,
i.e. the model can capture the dynamics of interest rates in real markets. The prop-
erty (i) makes it possible to speedily calibrate the model using the formulas, and to
price other interest rate derivatives exploiting the calibrated model. The property
(ii) ensures that this pricing is accurate. The LIBOR market model, developed
by Brace, Gatarek, and Musiela [8], Miltersen, Sandmann, Sondermann [21], and
Jamshidian [18], is a Heath-Jarrow-Morton model (Heath, Jarrow, and Morton [15])
specified to be an interest rate version of the celebrated Black-Scholes model (Black
and Scholes [7]) of stock price. In the Black-Scholes model, the change in stock price
is subject to a lognormal distribution under the risk-neutral measure. In the LI-
BOR market (LM) model, the change in each forward LIBOR rate (resp. forward
swap rate) is subject to a lognormal distribution (resp. an approximate lognormal
distribution) under the associated equivalent martingale measure. Thus a Black-
Scholes-like pricing formula (resp. approximate pricing formula) for each caplet
(resp. swaption) is derived, which has made the LM model currently the most
popular interest rate derivative pricing models among both practitioners and re-
searchers. However, a statistical test conducted in Chapter 2 in Kusuda [19] rejected
the LM model and showed that the distribution of the estimated discretized Wiener
process, which is supposed to be a normal distribution, has much fatter tail than
the normal distribution. This result suggests that the deterministic volatility in the
LM model with a stochastic one and/or that a jump process should be introduced
into the LM model. A stochastic volatility LM model (Andersen and Andreasen [2])
and jump-diffusion LM models (Glasserman and Kou [14], Kusuda [19]) have been
proposed. However, these two extensions are not alternatives but complements in
the sense a stochastic volatility term mainly affects the price of derivatives with long
maturity while a jump term mainly affects that of derivatives short maturity. It has
been, therefore, desired that a stochastic volatility jump-diffusion LM model which
includes both a stochastic volatility LM model and a jump-diffusion LM model as
special cases, is introdued and statistically tested. No stochastic volatility jump-
diffusion LM model has been presented so far. The main purpose of this paper is
to present a stochastic volatility jump-diffusion LM (SVJDLM, hereafter) model
which is an extension of the LM model and possesses both the above properties (i)
and (ii).

In the SVJDLM model, it is assumed like in most jump-diffusion option pricing
models that the jump magnitude of forward LIBOR rate is a continuously dis-
tributed random variable at each jump occurring time. Under this assumption,
the markets have uncountably infinite number of information sources, and no finite

1The LIBOR rate is the interest rate offered by banks on deposits from other banks in Eu-
rocurrency markets and is frequently a reference rate of interest for loans in international financial
markets. In the LIBOR market model, the dynamics of forward LIBOR rates are modeled. A rep-
resentative real example of forward LIBOR rate is a Eurodollar future rate traded on the Chicago
Mercantile Exchange. In the case of Eurodollar futures, the underlying instrument of Eurodollar
future contracts is the 90-day LIBOR and future rates with 48 different times to maturity, i.e.,
one month, two month,· · · , one year, one year and three month, one year and six month, · · · , ten
years, are traded.
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number of securities complete the markets.2 In incomplete markets, the standard
arbitrage-free pricing method cannot be applied because the payoff of an option
is not guaranteed to be replicable. In many jump-diffusion option pricing mod-
els (Ahn and Thompson [1]; Bates [3] [4] Das and Foresi [12], Naik and Lee [22],
etc.), general equilibrium (GE, hereafter) pricing method in incomplete markets is
adopted. In these models, it is assumed that there is a representative agent with a
CRRA utility, or that there are homogeneous agents with a common CRRA utility.
In order to justify the assumption on the representative agent, it is required to
show that there exists a security market equilibrium in which the representative
agent admits a CRRA utility. However, it is very difficult to do so in incomplete
markets. It is still difficult to show the existence of security market equilibria under
the assumption of homogeneous agents.

Björk, Kabanov, and Runggaldier [5] assumed that every bond with any maturity
date is traded in security markets with jump-diffusion information, and showed
that under some regularity condition, the markets are approximately complete (see
Björk, Di Masi, Kabanov, and Runggaldier [6]) in which any contingent claim can
be approximately replicated with an arbitrary precision by an admissible portfolio
of the bonds. Thus, arbitrage-free pricing method can be adopted in approximately
complete bond markets. Glasserman and Kou [14] have presented a jump-diffusion
LIBOR market model assuming approximately complete bond markets. In their
model, the market price of risk is rather arbitrarily specified such that arbitrage-
free pricing formulas for caplet and swaption can be derived. Here it must be noted
that in the GE model, there is a functional relation among the market price of risk
and the dynamics of aggregate consumption and commodity price in equilibrium.
Thus, it is desired to verify that specification of the market price of risk in option
pricing model can be consistent to the GE functional relation among the market
price of risk and the dynamics of aggregate consumption and commodity price in
some reasonable GE model. This should be verified, in particular, in the case when
option prices depend on the market price of risk.

Recently, the author (Kusuda [19]) has introduced the notion of approximate
security market equilibrium in which each agent is allowed to choose a consumption
plan that is approximately financed with any prescribed precision by a budget fea-
sible portfolio, and showed sufficient conditions for the existence and uniqueness of
approximate security market equilibria in approximately complete bond markets.
This paper presents an SVJDLM model assuming the GE approximately complete
bond market model. First, since the nominal bond price processes can be exoge-
nously given in the GE model, they are specified such that a compound Poisson
jump process is introduced into the LM model, and the deteministic volatility in
the LM model is replaced with a stochastic volatility which is subject to a square-
root process. The GE dynamics of a forward LIBOR (resp. swap) rate is derived
under the associated forward martingale measure because the pricing problem of a
caplet (resp. swaption) is reduced to calculating the conditional expectation of the
caplet’s (resp. swaption’s) payoff under the associated forward martingale measure
(see Definition 4 and 5) introduced by Jamshidian [17]. The conditional distribu-
tion is analytically intractable to calculate the conditional expectation because of
the presence of the stochastic volatility and jump terms. For a class of stochas-
tic volatility jump-diffusion models of security price with the affine jump-diffusion
(AJD) structure (see Duffie, Pan, and Singleton [13]) under the risk-neutral mea-
sure, Duffie, Pan, and Singleton [13] showed that an arbitrage-free pricing formula

2Merton [20] assumed that the market price of risk is zero in order to make the number of
sources of the market information finite, and to complete the markets. However, an empirical
analysis in Pan [23] showed that the market price of risk cannot be regarded as zero.
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for European option can be derived using a Fourier transform method developed
by Heston [16], Bates [4], and Duffie, Pan, and Singleton [13]. This paper exploits
this idea, and approximates each forward LIBOR (resp. swap) rate and its volatil-
ity processes in order that the approximate system dynamics of each rate and its
volatility admit an AJD structure under the associated forward martingale measure
instead of the risk-neutral measure. Then an approximate GE pricing formula for
its caplet (resp. swaption) is derived using the Fourier transform method.

Since the SVJDLM model admits an approximate AJD structure, an approxi-
mate characteristic function can be derived. Therefore, a characteristic function-
based method developed by Carrasco and Florens [10], and Carrasco, Chernov,
Florens, and Ghysels [11], can be employed to estimate and test the SVJDLM
model.

The remainder of this paper is organized as follows. Section 2 reviews the GE
model of security markets with jump-diffusion information. Section 3 specifies the
SVJDLM model and derives the dynamics of forward LIBOR rates. Sections 4 and
5 derive approximate GE pricing formulas for a caplet and a swaption. Appendix A,
B, and C introduce marked point process, Ito’s Formula and Girsanov’s Theorem,
and basic concepts in bond markets, respectively. Appendix D shows proofs.

2. The GE Model of Security Markets
with Jump-Diffusion Information

In this section, the GE model of security markets with jump-diffusion information
is reviewed following Chapter 3 and 4 in Kusuda [19].

2.1. Security Market Economy under Jump-Diffusion Uncertainty. A con-
tinuous-time frictionless security market economy with time span [0, T †] (abbrevi-
ated by T, hereafter) for a fixed horizon time T † > 0 is considered. The agents’
common subjective probability and information structure is modeled by a complete
filtered probability space (Ω,F ,F, P ) where F := (Ft)t∈T is the natural filtra-
tion generated by a d-dimensional Wiener process W and a marked point process
ν(dt × dz) (see Appendix A.1) on a Lusin space (Z,Z) (Z = Rn in the SVJDLM
model) with the P -intensity kernel λt(dz). There is a single perishable consump-
tion commodity. The commodity space is a Banach space L∞ := L∞(Ω×T,P, µ)
where P is the predictable σ-algebra on Ω × T, and µ is the product measure of
the probability measure P and the Lebesgue measure on T. There are I agents.
Each agent i ∈ {1, 2, · · · , I} (abbreviated by I, hereafter) is represented by (U, c̄i),
where U is a common strictly increasing and continuous utility on the positive cone
L∞+ of the consumption process and c̄i ∈ L∞+ is an endowment process, which is
assumed to be nonzero. The economy mentioned above is described by a collection:
E := ((Ω,F ,F, P ), (U, c̄i)i∈I). There are markets for the consumption commodity
and securities at every date t ∈ T. The traded securities are nominal-risk-free
security (NOT the risk-free security) called the money market account and a con-
tinuum of zero-coupon bonds whose maturity times are (0, T †], each of which pays
one unit of cash (NOT one unit of the commodity) at its maturity time. Let p, B,
and (BT )T∈(0,T †] denote the processes of consumption commodity price, nominal
money market account price, and nominal bond price, respectively. The collection
(B, (BT )T∈(0,T †]) of security prices is abbreviated by B, and called the family of
bond prices.

Each agent is allowed to hold a portfolio consisting of the money market account
and every bond with any maturity time T ∈ [t, T †] at each time t ∈ T.

Definition 1. A portfolio is a stochastic process ϑ = (ϑ0, ϑ1(·)) that satisfies:
(1) The component ϑ0 is a real-valued P-measurable process.
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(2) The component ϑ1 is such that:
(a) For every (ω, t) ∈ Ω × T, the set function ϑ1

t (ω, · ) is a signed finite
Borel measure on [t, T †].

(b) For every Borel set A ∈ [t, T †], the process ϑ1
t (A) is P-measurable.

An intuitive interpretation of this definition is that ϑ0
t and ϑ1

t (dT ) are the number
of units of the money market account and the number of bonds with maturity times
[T, T + dT ] held at time t, respectively. The value process Vt(ϑi

n) of a portfolio ϑi
n

is given by

Vt(ϑi
n) = Btϑ

i0
nt +

∫ T †

t

BT
t ϑ

i1
nt(dT ) ∀t ∈ T.

2.2. Arbitrage-Free Approximately Complete Markets. Let n ∈ N. Let
Ln denote the set of real-valued P-measurable process X satisfying the integrabil-
ity condition

∫ T †

0
|Xs|n ds < ∞ P -a.s. Also let Ln(λt(dz) × dt) denote the set of

real-valued P ⊗ B(R)-measurable process m satisfying the integrability condition∫ T †

0

∫∞
−∞ |ms(z)|n λs(dz) ds <∞ P -a.s. The notion of implementable family of bond

prices is introduced.

Definition 2. A bond price family B is implementable if and only if the following
conditions hold:

(1) (a) For every T ∈ (0, T †], the dynamics of nominal bond price process
BT satisfies the following stochastic differential-difference equation
(SDDE)

dBT
t

BT
t−

= rT
t dt+ vT

t · dWt +
∫

Z
mT

t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ [0, T )

with BT
T = 1 where rT ∈ L1, vT ∈

∏d
j=1 L2, and mT ∈ L1(λt(dz)×dt)

and satisfies mT
t (z) > −1 P -a.s. for every (t, z) ∈ T × Z. Moreover,

the following hold:
(i) For every (ω, t) ∈ Ω × T, r ·t (ω), v ·t (ω) ∈ C1(T), and for every

(ω, t, z) ∈ Ω×T× Z, m ·
t (ω, z) ∈ C1(T).

(ii) For every T ∈ (0, T †], BT is regular enough to allow for the
differentiation under the integral sign and the interchange of
integration order.

(iii) For every t ∈ T, bond price curves B ·
t are bounded P -a.e.

(iv) The family of jump magnitude functions m ·
t ( · ) is uniformly

bounded µ-a.e.
(b) The dynamics of nominal money market account price process satisfies

dBt

Bt
= rB

t dt for every t ∈ [0, T †) such that B0 = 1 where rB
t is given

by rB
t = −∂ lnBT

t

∂T

∣∣∣∣
T=t

, and rB ≥ 0 µ-a.e.

(2) There exists a unique real-valued P -martingale ΛB such that

dΛB
t

ΛB
t−

= −vBt · dWt −
∫

Z
mB

t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ [0, T †) (2.1)

with ΛB
0 = 1 where (vB,mB) ∈

∏d1
j=1 L2 × L1(λt(dz)× dt) satisfies

rT
t = rB

t + vBt · vT
t +

∫
Z
mB

t (z)mT
t (z)λt(dz). (2.2)

(3) The process ΛB

B is bounded above and bounded away from zero µ-a.e.
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The processes vBt and mB
t (z)λt(dz) are called market price of (nominal) diffu-

sive risk and market price of (nominal) jump risk, respectively. It follows from Ito’s
formula (see Appendix B.1) and Girsanov’s Theorem (see Appendix B.2) that the
existence of risk-neutral measures, which implies that markets are arbitrage-free
(for definitions of risk-neutral measure and arbitrage-free, see Appendix C.2), is
equivalent to the existence of process ΛB satisfying the conditions (2.1) and (2.2).
It should be noted that the process ΛB satisfying conditions (2.1) and (2.2) is the
Radon-Nikodym derivative of risk-neutral measure, and therefore the uniqueness of
processes ΛB satisfying conditions (2.1) and (2.2) is equivalent to the uniqueness
of risk-neutral measures. Björk, Di Masi, Kabanov, and Runggaldier [6] showed
that markets with any implementable bond price family are approximately com-
plete in the sense that for any T ∈ (0, t†] and any T -contingent claim, there exists
a sequence of admissible self-financing portfolios such that the sequence of corre-
sponding value processes converge to the claim at time T (for these definitions, see
Appendices C.1, C.2, and C.3). Let B̄ and Θ(B̃) denote the set of all implementable
bond price families and the space of admissible portfolios, respectively.

2.3. Approximate Security Market Equilibrium. The notion of approximate
security market equilibrium is introduced in which each agent is allowed to choose
any consumption plan that is approximately financed with an arbitrary precision
by a budget feasible portfolio.

Definition 3. A collection ((ĉi)i∈I, p,B) ∈
∏

i∈I L
∞
+ × L∞ × B̄ constitutes an

approximate security market equilibrium for E if and only if it follows that:

(1) For every i ∈ I, ĉi solves the problem maxci∈C̄i(p,B) U
i(ci) where

C̄i(p,B) = {ci ∈ L∞+ | ∃(ϑi
n)n∈N ∈

∏
n∈N

Θ(B̃) s.t.

Vt(ϑi
n) =

∫ t

0

ϑi0
ns dBs +

∫ t

0

∫ T †

s

ϑi1
ns(dT ) dBT

s +
∫ t

0

ps(c̄is − cis) ds ∀(n, t) ∈ N×T,

lim
n→∞

VT †(ϑi
n)

BT †
= 0 in L2(Ω,FT † , P̃B) }.

(2) The commodity market is cleared:
∑

i∈I ĉ
i =

∑
i∈I c̄

i.

Hereafter, approximate security market equilibrium is abbreviated by ASM equi-
librium. The following assumption is a sufficient condition for the existence of ASM
equilibria.

Assumption 1. (1) Every agent has a common CRRA utility U of the form

U(c) = E
[∫ T †

0
u(t, ct) dt

]
where u is given by

u(t, x) = e−ρt γ

1− γ

((x
γ

)1−γ

− 1
)

for some positive constants ρ > 0 and γ > 0.
(2) The aggregate endowment is bounded away from zero µ-a.e.

3. The Stochastic Volatility Jump-Diffusion LIBOR Market Model

In this section, the specification of SVJDLM (Stochastic Volatility Jump-Diffusion
LIBOR Market) model is provided, and the GE (General Equilibrium) dynamics of
a forward LIBOR rate is derived under the associated forward martingale measure,
which is defined in the following.
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Definition 4. Let B ∈ B̄. For every T ∈ (0, T †], a probability measure denoted by
PT on (Ω,F) is a T -forward martingale measure at B if and only if PT is equivalent

to P , and for every T ′ ∈ (0, T †], BT ′

BT is a local PT -martingale.

Let the common tenor of forward LIBOR rates be denoted by δ ∈ (0, 1]. For
every T ∈ (0, T † − δ], the T -forward LIBOR rate process LT is defined by

LT
t =

1
δ

(
BT

t

BT+δ
− 1
)

∀t ∈ [0, T ].

3.1. The Stochastic Volatility Jump-Diffusion LIBOR Market Model. For
every T ∈ (0, T † − δ] and t ∈ [0, T ], the integer dT−t

δ e − 1 is denoted by KT
t ,

hereafter. The SVJDLM (Stochastic Volatility Jump-Diffusion LIBOR Market)
model is specified by the set of Assumption 1 and the following two assumptions.

Assumption 2. (1) The Lusin space (Z,Z) is 1-dimensional Euclidean space
where d′ ∈ N.

(2) The P -intensity kernel λt(dz) is given by

λt(dz) = λt φ(z) dz (3.1)

where λ and φ satisfy

λt = λ0 + λ1Vt ∀t ∈ T,

φ(z) =
1√
2π
e−

1
2 z2

∀z ∈ R
(3.2)

where λ0, λ1 ∈ R+, and V satisfies

dVt = κ(V̄ − Vt) dt+
√
Vt ςV · dWt ∀t ∈ [0, T ) (3.3)

for some positive constants κ, V̄ and some constant vector ςV ∈ Rd.
(3) The dynamics of the aggregate endowment process follows the SDDE

dc̄t
c̄t−

= rc̄
t dt+ vc̄

t · dWt +
∫

R
(eσc̄z+µc̄ − 1) { ν(dt× dz)− λt(dz) dt } ∀t ∈ [0, T †)

for some rc̄ ∈ L1, vc̄ ∈
∏d1

j=1 L2, and (σc̄, µc̄) ∈ R2.

Assumption 3. The family B of nominal bond price processes satisfies B ∈ B̄ and
the following conditions:

(1) The volatilities of bonds B are such that there exist processes (ςT )T∈(0,T †−δ]

and constant vectors ςc̄, ςp ∈ Rd satisfying for every T ∈ (0, T † − δ] and
t ∈ [0, T ), vT

t

vc̄
t

vp
t

 =
√
Vt

ςTtςc̄
ςp

 (3.4)

where ςT satisfies

ςTt

= ς
T−KT

t δ
t −

∑KT
t

k=1

δLT−kδ
t−

1+δLT−kδ
t−

ς(T − kδ − t) ∀t ∈ [0, T − δ)

≈ 0 ∀t ∈ [T − δ, T )
(3.5)

for some Borel measurable function ς: R+ → Rd.
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(2) The jump magnitudes of bonds B are such that there exist Borel measurable
functions µ : R+ → R and σ : R+ → R such that for every T ∈ (0, T †− δ],

mT
t (z)


= 1+m

T−KT
t δ

t (z)QKT
t

k=1

 
1+

δL
T−kδ
t−

1+δL
T−kδ
t−

(exp[σ(T−kδ−t)z+µ(T−kδ−t)]−1)

! − 1 ∀(t, z) ∈ [0, T − δ)× R

≈ 0 ∀(t, z) ∈ [T − δ, T )× R.
(3.6)

(3) The Jump magnitude mB of density process satisfies

mB
t (z) = eσBz+µB ∀(t, z) ∈ T× R (3.7)

for some (σB, µB) ∈ R2.

Remark 1. It shall be shown in Proposition 1 that
√
Vt ς(T−t) and eσ(T−t)z+µ(T−t)−

1 are the volatility and the jump magnitude of LT
t , respectively.

3.2. GE Dynamics of Forward LIBOR Rates. It shall be shown in Section 4
that the pricing problem of a caplet on LT is reduced to the calculation of expec-
tation of the caplet’s payoff under the (T + δ)-forward martingale measure. Let
T δ = T + δ, hereafter. The following proposition presents that the bond price
family B is supported as an ASM equilibrium, and the GE dynamics of T -forward
LIBOR rate process under PT δ

as well as under P in the SVJDLM model.

Proposition 1. Under Assumption 1-3, the following hold:
(1) The collection ((ĉi)i∈I, p,B) is an ASM equilibrium for E where pt =

ΛB
t

Bt
uc(t, c̄t) In addition, if γ ≤ 1, then the ASM equilibrium is unique.

(2) The market prices of nominal diffusive risk and nominal jump risk satisfy
for every t ∈ T,

vBt = γ vc̄
t + vp

t , mB
t (z)λt(dz) = (λ0 + λ1Vt)(1− e−(γmc̄+mp)·z) dz, (3.8)

in the equilibrium where vp and (emp·z − 1) are the volatility and the jump
magnitude of commodity price process, respectively.

(3) Let T ∈ (0, T †− δ]. The dynamics of T -forward LIBOR rate process satisfy
for every t ∈ [0, T ),

dLT
t

LT
t−

=
{
ς(T − t) · (γ ςc̄ + ςp − ςT

δ

t )Vt

−
∫ ∞

−∞
(eσ(T−t)z+µ(T−t) − 1)(1 +mT δ

t (z))e−(γσc̄+σp)zφ(z) dz (λ0 + λ1Vt)
}
dt

+
√
Vt ς(T − t) · dWt +

∫ ∞

−∞
(eσ(T−t)z+µ(T−t) − 1) ν(dt× dz), (3.9)

where ςp = γςc̄−ςB, σp = −
(
γσc̄+σB

)
, and V satisfies (3.3), or equivalently

dLT
t

LT
t−

=
√
Vt ς(T − t) · dWT δ

t +
∫ ∞

−∞
(eσ(T−t)z+µ(T−t) − 1)

{
ν(dt× dz)− λT δ

t φT δ

t (z) dz dt
}
,

dVt =
[
κV̄ −

{
κ+ ςV · (γςc̄ + ςp − ςT

δ

t )
}
Vt

]
dt+

√
Vt ςV · dWT δ

t ,

(3.10)

where

WT δ

t = Wt +
∫ t

0

(γ ςc̄ + ςp − ςT
δ

s )
√
Vs ds, λT δ

t = ιT
δ

t (λ0 + λ1Vt),

φT δ

t (z) =
1
ιT

δ

t

(1 +mT δ

t (z))e−(γσc̄+σp)zφ(z),
(3.11)
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where

ιT
δ

t =
∫ ∞

−∞
(1 +mT δ

t (z))e−(γσc̄+σp)zφ(z) dz, (3.12)

and WT δ

and λT δ

t φT δ

t (z) dz is a PT δ

-Wiener process and the PT δ

-intensity
kernel of ν(dt× dz), respectively.

Remark 2. As shown in (3.8), in equilibrium, the market price of diffusive risk
is a function of the volatilities of the aggregate consumption and the commodity
price, and the market price of jump risk is a function of the jump magnitudes of
the aggregate consumption and the commodity price. In most conventional option
pricing models, the market price of risk is rather arbitrarily specified. It is desired
to verify that the option pricing model can be embedded in some reasonable GE
model, or to put it more precisely that the specification of market price of risk
can be consistent to the GE functional relation among the market price of risk
and the dynamics of the aggregate consumption and the commodity price in some
reasonable GE model. In particular, in the case when option prices depend on
the market price of risk, it should be verified. As shown in Section 4 and 5, the
GE prices of caplet and swaption depend on the market price of jump risk in the
SVJDLM model.

Proof. See Appendix D.1. �

4. Approximate GE Pricing Formula for Caplet

In this section, an approximate GE pricing formula for a caplet, a European
call option on a forward LIBOR rate, is derived in the SVJDLM model exploit-
ing the forward martingale measure approach introduced by Jamshidian [17], the
Fourier transform method developed by Heston [16], Bates [4], and Duffie, Pan,
and Singleton [13], and approximations. Here a caplet is defined in the following.

Let T ∈ (0, T † − δ] and K > 0. A caplet on T -forward LIBOR rate LT with
strike rate K is a contingent claim with payoff δ (LT

T − K)+ at time T δ where
(LT

T −K)+ := max{LT
T −K, 0}.

Let Cplt(LT ,K) denote the GE price of the caplet on T -forward LIBOR rate
LT with strike rate K at time t in an ASM equilibrium ((ĉi)i∈I, p,B) for E in
the SVJDLM model. Since the security markets are approximately complete in
the SVJDLM model, there exists a sequence of replicable claims converging to the
T δ-contingent claims. Let (ϑn)n∈N denote the corresponding sequence of replicable
claims. Since the value process of every replicating portfolio discounted by BT δ

is
a PT δ

-martingale, the following holds:

Vt(ϑn)
BT δ

t

= ET δ

t

[
VT δ(ϑn)
BT δ

T δ

]
= ET δ

t [VT δ(ϑn)] (4.1)

where ET δ

t [ · ] = ET δ

[ · | Ft ] and ET δ

[ · ] is the expectation operator under PT δ

.
Taking the limit of the both sides of (4.1) yields

Cplt(L
T ,K) = δBT δ

t ET δ

t [ (LT
T −K)+ ]. (4.2)

4.1. Approximation to AJD Structure under Associated Forward Mar-
tingale Measure. Let Y T = lnLT for every t ∈ [0, T ]. Applying Ito’s formula
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to (3.10) yields the GE dynamics of Y T for every s ∈ [t, T ],

dY T
s =

{
−ιT

δ

s λ0 −
(
ιT

δ

s λ1 +
1
2
‖ς(T − s)‖2

)
Vs

}
ds

+
√
Vs ς(T − s) · dWT δ

s +
∫ ∞

−∞

(
σ(T − s)z + µ(T − s)

)
νT δ

s (ds× dz),

dVs =
[
κV̄ −

{
κ+ ςV ·

(
γςc̄ + ςp − ςT

δ

s

)}
Vs

]
ds+

√
Vs ςV · dWT δ

s ,

(4.3)

The distribution Y T conditional on Ft is analytically intractable because of the
stochastic volatility and jump terms. For a class of stochastic volatility jump-
diffusion models of security price with the affine jump-diffusion (AJD) structure
(see Duffie, Pan, and Singleton [13]) under the risk-neutral measure, Duffie, Pan,
and Singleton [13] showed that an arbitrage-free pricing formula for European op-
tion can be derived using a Fourier transform method developed by Heston [16],
Bates [4], and Duffie, Pan, and Singleton [13]. This paper exploits this idea, and
approximates (Y T

s , Vs) in order that the approximate system dynamics of (Y T
s , Vs)

admit an AJD structure under PT δ

. In (4.3), each of ς(T − s), µ(T − s), σ(T −
s), ςT

δ

s ,mT δ

s (z), ιT
δ

s , λT δ

s , and φT δ

s includes a stochastic process or a time variable,
and therefore they are approximated as constants during each time interval defined
as follows. Let In = [(n − 1)δ, nδ] and τn = n − 1

2δ for every n ∈ N.3 First,
ς(T − s), µ(T − s) and σ(T − s) sre approximated to ς̃ , µ̃, and σ̃, resectively, which
are defined by  ς̃(T − s)

µ̃(T − s)
σ̃(T − s)

 =

ς(τn)
µ(τn)
σ(τn)

 if T − s ∈ In. (4.4)

Next, ςT
δ

s and mT δ

s (z) are approximated to

ςT
δ

s = ς
T−KT

s δ
s −

KT
s∑

k=1

δLT−kδ
s−

1 + δLT−kδ
s−

ς(T − kδ − s) ≈ −
KT

s∑
k=1

δLT−kδ
t−

1 + δLT−kδ
t−

ς̃(T − kδ − s)

and

mT δ

s (z) =
1 +m

T δ−KT δ

s δ
s (z)∏KT δ

s

k=1

(
1 +

δLT δ−kδ
s−

1+δLT δ−kδ
s−

(
eσ(T δ−kδ−s)z+µ(T δ−kδ−s) − 1

)) − 1

≈ exp

[
−

KT δ

s∑
k=1

ln
[
1 +

δLT δ−kδ
t−

1 + δLT δ−kδ
t−

(
eσ̃(T δ−kδ−s)z+µ̃(T δ−kδ−s) − 1

)]]
− 1

≈ exp

[
−

KT δ

s∑
k=1

ln
[
1 +

δLT δ−kδ
t−

1 + δLT δ−kδ
t−

{
eµ̃(T δ−kδ−s)

(
1 + σ̃(T δ − kδ − s)z

)
− 1
}]]

− 1

≈ exp

[
−

KT δ

s∑
k=1

δLT δ−kδ
t−

1 + δLT δ−kδ
t−

{
eµ̃(T δ−kδ−s)σ̃(T δ − kδ − s)z + eµ̃(T δ−kδ−s) − 1

}]
− 1,

respectively. Here the approximations ςT−KT
s δ

s , ln(1+mT δ−KT δ

s δ
s (z)) ≈ 0, LT δ−kδ

s ≈
LT δ−kδ

t , eσ̃(T δ−kδ−t)z ≈ 1 + σ̃(T δ − kδ − t)z, and ln[1 + Zs] ≈ Zs were used where

3If this approximation is computationally infeasible, then one can set I0 = [0, δ], τ0 = δ
2
,

In = [2n−1δ, 2nδ], τn = 2nδ+2n−1δ
2

for every n ∈ N, and replace KT
s with K̃T

s = d τn
δ
e − 1 if

T − s ∈ In.
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Zs =
δLT δ−kδ

t−

1+δLT δ−kδ
t−

{eµ̃(T δ−kδ−s)σ̃(T δ − kδ − s)z + eµ̃(T δ−kδ−s) − 1}. Let ς̃T
δ

s , m̃T δ

s (z),

and ι̃T
δ

s denote the approximations of ςT
δ

s , mT δ

s (z), and ιT
δ

s , respectively, i.e. they
are given by

ς̃T
δ

s = −
KT

s∑
k=1

δLT−kδ
t−

1 + δLT−kδ
t−

ς̃(T − kδ − s),

m̃T δ

s (z) = exp

[
−

KT δ

s∑
k=1

δLT δ−kδ
t−

1 + δLT δ−kδ
t−

{
eµ̃(T δ−kδ−s)σ̃(T δ − kδ − s)z + eµ̃(T δ−kδ−s) − 1

}]
− 1,

ι̃T
δ

s =
∫ ∞

−∞
(1 + m̃T δ

s (z))e−(γσc̄+σp)zφ(z) dz

= exp

[
1
2
(z̄T δ

s )2 −
KT δ

s∑
k=1

δLT−kδ
t−

1 + δLT−kδ
t−

(
eµ̃(T δ−kδ−s) − 1

)]
(4.5)

where

z̄T δ

s =
KT δ

s∑
k=1

δLT−kδ
t−

1 + δLT−kδ
t−

eµ̃(T δ−kδ−s)σ̃(T δ − kδ − s) + γσc̄ + σp (4.6)

Finally, λT δ

s and φT δ

s (z) are approximated to λ̃T δ

s and φ̃T δ

s (z), respectively, which
are given by

λ̃T δ

s = ι̃T
δ

s (λ0 + λ1Vs),

φ̃T δ

s (z) =
1
ι̃T δ

s

(1 + m̃T δ

s (z))e−(γσc̄+σp)zφ(z)

=
1√
2π

exp
[
−1

2

(
z − z̄T δ

s

)2
]
.

(4.7)

Using the approximations (4.4)-(4.7), define the approximate GE caplet price
C̃plt(LT ,K) by

C̃plt(L
T ,K) = δBT δ

t ET δ

t

[
(L̃T

T −K)+
]

(4.8)

where L̃T
T = eỸ T

T and Ỹ T
T is given by

dỸ T
s =

{
−ι̃T

δ

s λ0 −
(
ι̃T

δ

s λ1 +
1
2
‖ς̃(T − s)‖2

)
Ṽs

}
ds

+
√
Ṽs ς̃(T − s) · dWT δ

s +
∫ ∞

−∞

(
σ̃(T − s)z + µ̃(T − s)

)
ν̃T δ

(ds× dz),

dṼs =
[
κV̄ −

{
κ+ ςV ·

(
γςc̄ + ςp − ς̃T

δ

s

)}
Ṽs

]
ds+

√
Ṽs ςV · dWT δ

s ,

(4.9)

with (Ỹ T
t , Ṽt)′ = (Y T

t , Vt)′ where ν̃T δ

(ds × dz) is the marked point process with
PT δ

-intensity kernel λ̃T δ

s φ̃T δ

s (z) dz.

Remark 3. The approximation m̃T δ

t formT δ

s looks quite rough at a glance. However,
it seems reasonable to suppose that mT δ

s is fairly close to zero under forecast values
of parameters. Therefore, m̃T δ

t can be regarded as a fairly good approximation for
mT δ

s from the viewpoint of deriving an approximate price of Cplt(LT ,K).
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4.2. The Fourier Transform Method and Pricing Formula for Caplet.
Since the system dynamics of X̃ = (Ỹ T

t , Ṽt)′ possesses an AJD structure under
PT δ

, the Fourier transform method shown in Duffie, Pan, and Singleton [13] can
be applied to X̃T . Define the function ψT δ

t,X̃T : C2 × R× R+ × [t, T ] → C by

ψT δ

t,X̃T (ξ, X̃T
s , s) = ET δ

s

[
eξ·X̃T

T

]
.

The function ψT δ

t,X̃T is derived in analytic form as shown in the following lemma.

Lemma 1. It follows that

ψT δ

t,X̃T ((ξ1, 0)′, (Ỹ T
s , Ṽs)′, s) = eα(τ ;ξ1)+ξ1Ỹ T

s +β(τ ;ξ1)Ṽs (4.10)

where τ = T − s, and

α(τ ; ξ1) =

{
α0(τ ; ξ1, τ0) if τ ∈ I0
α(τn−1; ξ1) + α0(τ − τn−1; ξ1, τn) if τ ∈ In,

β(τ ; ξ1) =

{
β0(τ ; ξ1, τ0) if τ ∈ I0
β(τn−1; ξ1) + β0(τ − τn−1; ξ1, τn) if τ ∈ In,

(4.11)

with

α0(τ ; ξ1, τn) = ι̃T
δ

s λ0

[
exp

[
1
2
σ̃(τ)ξ21 +

(
µ̃(τ) + z̄T δ

s σ̃(τ)
)
ξ1

]
− ξ1 − 1

]
τ

− κV̄

[
bn + dn

a
τ +

2
a

ln
[
1− bn + dn

2dn
(1− e−dnτ )

]]
,

β0(τ ; ξ1, τn) =
cn(1− e−dnτ )

2dn − (bn + dn)(1− e−dnτ )
,

where

a = ‖ςV ‖2, bn = ς(τn) · ςV ξ1 −
{
κ+ ςV ·

(
γςc̄ + ςp − ς̃T

δ

s

)}
,

cn = 2ι̃T
δ

s λ1 exp
[

1
2
σ̃(τ)ξ21 +

(
µ̃(τ) + z̄T δ

s σ̃(τ)
)
ξ1

]
+ ‖ς(τn)‖2ξ21 −

(
2ι̃T

δ

s λ1 + ‖ς(τn)‖2
)
ξ1 − 2ι̃T

δ

s λ1,

dn =
√
|b2n − a cn| exp

[
i arg(b2n − a cn)

2

]
.

Proof. See Appendix D.2. �

Using Lemma 1, the approximate GE caplet price is derived as shown in the
following proposition.

Proposition 2. Let T ∈ (0, T † − δ] and K ∈ R++. Under Assumption 1-3, it fol-
lows that for a given ASM equilibrium ((ĉi)i∈I, p,B) for E where pt = B

ΛBu
α̂
c (t, c̄t),

the approximate GE caplet price C̃plt(LT ,K) satisfies the formula

C̃plt(L
T ,K) = δBT δ

t

[
1
2
eα(T−t;1)+Y T

t +β(τ ;1)Vt

− 1
π

∫ ∞

0

Im
[
eα(T−t;1−iv)+(1−iv)Y T

t +β(τ ;1−iv)VtKiv
]

v
dv

+K

(
1
π

∫ ∞

0

Im
[
eα(T−t;−iv)−ivY T

t +β(τ ;−iv)VtKiv
]

v
dv

)]
(4.12)
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where Y T
t = lnLT

t , and (α, β)′ is given in (4.11).

Proof. For every y ∈ R and a, b ∈ Rn, let Ga,b(y; X̃T
t ) denote the price of a security

at time t, which pays ea·X̃T
T at time T in the event such that b · X̃T

T ≤ y. Then the
approximate caplet price C̃plt(LT ,K) is

C̃plt(L
T ,K) = δ

{
G(1,0),(−1,0)(− lnK; X̃T

t )−KG(0,0),(−1,0)(− lnK; X̃T
t )
}
. (4.13)

On the other hand, the following holds:

Ga,b(y; X̃T
t ) = BT δ

t ET δ

t

[
ea·X̃T

T 1b·X̃T≤y

]
. (4.14)

Thus, the Fourier-Stieltjes transform of Ga,b( · ; X̃T
t ), if well defined, is given by∫ ∞

0

eivydGa,b(y; X̃T
t ) = ψT δ

t,X̃T (a+ ivb, X̃T
t , t).

It follows from the extended Lévy inversion formula given in Duffie, Pan, and
Singleton [13] that

Ga,b(y; X̃T
t ) =

1
2
ψT δ

t,X̃T (a, X̃T
t , t)−

1
π

∫ ∞

0

Im
[
ψT δ

t,X̃T (a+ ivb, X̃T
t , t)e

−ivy
]

v
dv.

(4.15)
Therefore, (4.12) follows from (4.13)-(4.15), and (4.10). �

5. Approximate GE Pricing Formula for Swaption

Next, an approximate GE pricing formula for a swaption is derived in the
SVJDLM model. Since a swaption is a European call option on a forward swap
rate, the approximate GE pricing formula for a swaption can be derived in a similar
procedure as shown in Section 3 and 4. First, the GE dynamics of forward swap
rate process is derived under the associated forward martingale measure. Then
the forward swap rate and its volatility are approximated in order that the sys-
tem dynamics of the approximate processes possesses an AJD structure under the
associated forward martingale measure. Finally, the Fourier transform method is
applied to the approximate processes to derive the approximate GE pricing formula
for its swaption.

Let N ∈ N and T ∈ (0, T † −Nδ]. Then a N -period T -forward swap rate process
LT,N is defined by

LT,N
t =

1
δ

(
BT,N

t

BT δ,N
t

− 1

)
∀t ∈ [0, T δ) (5.1)

where BT,N
t =

∑N
j=1B

T+(j−1)δ
t . We call LT,N (T,N)-forward swap rate process,

hereafter. A payer swaption on (T,N)-forward swap rate LT,N with strike rate
K ∈ R++ is a contingent claim with fixed payoffs δ(LT,N

T −K)+ at time T + δ, T +
2δ, ..., T +Nδ. We call the swaption (T,N)-forward swaption.

Let PSt(LT,N ,K) denote the GE price of the (T,N)-swaption with strike rate
K at time t in an ASM equilibrium ((ĉi)i∈I, p,B) for E in the SVJDLM Model. In
order to derive the GE price of the swaption, a forward martingale measure called
(T δ, N)-forward martingale measure is exploited.

Definition 5. Let B ∈ B̄. For every N ∈ N and T ∈ (0, T † − Nδ], a probability
measure denoted by PT,N on (Ω,F) is a (T,N)-forward martingale measure at B
if and only if PT,N is equivalent to P , and B

BT,N is a local PT,N -martingale.
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The GE price of the (T,N)-forward swaption at time t ∈ [0, T ) satisfies

PSt(LT,N ,K) = δBT δ,N
t ET δ,N

t

[
(LT,N

T −K)+
]

(5.2)

where ET δ,N is the expectation operator under the (T,N)-forward martingale mea-
sure PT δ,N .

5.1. Dynamics of Forward Swap Rate under Associated Forward Martin-
gale Measure. First, it is straightforward to see that the GE dynamics of BT,N

satisfies the following SDDE:

dBT,N
t

BT,N
t−

= rT,N dt+
√
Vt ς

T,N
t ·dWt+

∫ ∞

−∞
mT,N

t (z) {ν(dt×dz)−λt φ(z) dz dt } (5.3)

where

rT,N = rB
t + vBt · vT,N

t +
∫ ∞

−∞
mB

t (z)mT,N
t (z)φ(z) dzλt,

ςT,N
t =

N∑
n=1

B
T+(n−1)δ
t

BT,N
t

ς
T+(n−1)δ
t , mT,N

t (z) =
N∑

n=1

B
T+(n−1)δ
t

BT,N
t

m
T+(n−1)δ
t (z).

(5.4)

Then the following proposition is obtained in the same way as shown in Propo-
sition 1.

Proposition 3. Let N ∈ N and T ∈ (0, T † − (N + 1)δ]. Under Assumption 1-3,
the dynamics of (T,N)-forward swap rate process satisfies for every t ∈ [0, T ),

dLT,N
t

LT,N
t−

= ςNt (T ) · dWT δ,N
t +

∫ ∞

−∞
ηT,N

t (z) {ν(dt× dz)− λT δ,N
t φT δ,N

t (z) dz dt },

dVt =
[
κV̄ −

{
κ+ ςV · (γςc̄ + ςp − ςT

δ,N
t )

}
Vt

]
dt+

√
Vt ςV · dWT δ,N

t ,

(5.5)

where

ςNt (T ) =
1 + δLT,N

t−

δLT,N
t−

(ςT,N
t − ςT

δ,N
t ), ηT,N

t (z) =
1 + δLT,N

t−

δLT,N
t−

(
1 +mT,N

t (z)

1 +mT δ,N
t (z)

− 1

)
,

WT δ,N
t = Wt +

∫ t

0

(γ vc̄
s + vp

s − vT δ,N
s ) ds, λT δ,N

t = ιT
δ,N

t (λ0 + λ1Vt),

φT δ,N
t (z) =

1

ιT
δ,N

t

(1 +mT δ,N
t (z))e−(γσc̄+σp)·z

where

ιT
δ,N

t =
∫ ∞

−∞
(1 +mT δ,N

t (z))e−(γσc̄+σp)zφ(z) dz,

and WT δ

t and λT δ

t φT δ

t (z) dz are a PT δ,N -Wiener process and the PT δ,N -intensity
kernel of ν(dt× dz), respectively.

5.2. Approximation to AJD Structure under Associated Forward Mar-
tingale Measure. Let Y T,N = lnLT,N . As conducted in the previous section, the
system dynamics of (Y T,N , V )′ is approximated in order to admit an AJD structure



14

under PTδ,N. First, ςNs (T ) is approximated as follows:

ςNs (T ) =
1 + δLT,N

s−

δLT,N
s−

N∑
n=1

(
B

T+(n−1)δ
s

BT,N
s

ςT+(n−1)δ
s − B

T δ+(n−1)δ
s

BT δ,N
s

ςT+nδ
s

)

≈
1 + δLT,N

s−

δLT,N
s−

N∑
n=1

B
T+(n−1)δ
s

BT,N
s

(ςT+(n−1)δ
s − ςT+nδ

s )

=
1 + δLT,N

s−

δLT,N
s−

N∑
n=1

B
T+(n−1)δ
s

BT,N
s

δL
T+(n−1)δ
s−

1 + δL
T+(n−1)δ
s−

ς(T + (n− 1)δ − s)

≈
1 + δLT,N

s−

δLT,N
s−

N∑
n=1

B
T+(n−1)δ
s

BT,N
s

δLT,N
s−

1 + δLT,N
s−

ς(T + (n− 1)δ − s)

≈
N∑

n=1

B
T+(n−1)δ
t

BT,N
t

ς̃(T + (n− 1)δ − s).

Here the following approximations were used.

B
T+(n−1)δ
s

BT,N
s

≈ B
T δ+(n−1)δ
s

BT δ,N
s

,
δL

T+(n−1)δ
s−

1 + δL
T+(n−1)δ
s−

≈
δLT,N

s−

1 + δLT,N
s−

,
B

T+(n−1)δ
s

BT,N
s

≈ B
T+(n−1)δ
t

BT,N
t

.

Next, mT δ,N
s (z) is approximated to

mT δ,N
s (z) =

N∑
n=1

B
T δ+(n−1)δ
s

BT δ,N
s

mT δ+(n−1)δ
s (z)

≈
N∑

n=1

B
T δ+(n−1)δ
s

BT δ,N
s

[
exp

[
−
KT δ+(n−1)δ

s ∑
k=1

δL
T δ+(n−1)δ−kδ
t−

1 + δL
T δ+(n−1)δ−kδ
t−

×
{
eµ̃(T δ+(n−1)δ−kδ−s)

(
1 + σ̃(T δ + (n− 1)δ − kδ − s)z

)
− 1
}]

− 1

]

≈−
N∑

n=1

KT+nδ
s∑
k=1

B
T δ+(n−1)δ
t

BT δ,N
t

δL
T δ+(n−1−k)δ
t−

1 + δL
T δ+(n−1−k)δ
t−

×
{
eµ̃(T δ+(n−1−k)δ−s)σ̃(T δ + (n− 1− k)δ − s)z + eµ̃(T δ+(n−1−k)δ−s) − 1

}
≈ exp

[
−

N∑
n=1

KT+nδ
s∑
k=1

B
T δ+(n−1)δ
t

BT δ,N
t

δL
T δ+(n−1−k)δ
t−

1 + δL
T δ+(n−1−k)δ
t−

×
{
eµ̃(T δ+(n−1−k)δ−s)σ̃(T δ + (n− 1− k)δ − s)z + eµ̃(T δ+(n−1−k)δ−s) − 1

}]
− 1.
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Let ς̃N (T−s) and m̃T δ,N
s (z) denote the approximations of ςN (T−s) and mT δ,N

s (z),
i.e. they are given by

ς̃N (T − s) =
N∑

n=1

B
T+(n−1)δ
t

BT,N
t

ς̃(T + (n− 1)δ − s),

m̃T δ,N
s (z) ≈ exp

[
−

N∑
n=1

KT+nδ
s∑
k=1

B
T δ+(n−1)δ
t

BT δ,N
t

δL
T δ+(n−1−k)δ
t−

1 + δL
T δ+(n−1−k)δ
t−

×
{
eµ̃(T δ+(n−1−k)δ−s)σ̃(T δ + (n− 1− k)δ − s)z + eµ̃(T δ+(n−1−k)δ−s) − 1

}]
− 1,

(5.6)

respectively. Therefore, ηT,N
s (z) is approximated to

ηT,N
s (z) =

1 + δLT,N
s−

δLT,N
s−

(
1 +mT,N

s (z)

1 +mT δ,N
s (z)

− 1

)

≈
1 + δLT,N

s−

δLT,N
s−

(
1 + m̃T,N

s (z)

1 + m̃T δ,N
s (z)

− 1

)
≈ exp

[
eµ̃(T δ+(n−1−k)δ−s)σ̃N (T − s)z + eµ̃(T δ+(n−1−k)δ−s) − 1

]
− 1.

(5.7)

Moreover, ιT
δ,N

s is approximated to ι̃T
δ,N

s which is given by

ι̃T
δ,N

s =
∫ ∞

−∞
(1 + m̃T δ,N

s (z))e−(γσc̄+σp)zφ(z) dz = exp

[
1
2
(z̄T δ,N

s )2

−
N∑

n=1

KT+nδ
s∑
k=1

B
T δ+(n−1)δ
t

BT δ,N
t

δL
T δ+(n−1−k)δ
t−

1 + δL
T δ+(n−1−k)δ
t−

(
eµ̃(T δ+(n−1−k)δ−s) − 1

)]
.

(5.8)

where

z̄T δ,N
s =

N∑
n=1

KT+nδ
s∑
k=1

B
T δ+(n−1)δ
t

BT δ,N
t

δL
T δ+(n−1−k)δ
t−

1 + δL
T δ+(n−1−k)δ
t−

× eµ̃(T δ+(n−1−k)δ−s)σ̃(T δ + (n− 1− k)δ − s) + γσc̄ + σp. (5.9)

Finally, λT δ,N
s and φT δ,N

s (z) are approximated to λ̃T δ,N
s and φ̃T δ,N

s (z), respctively,
which are defined by

λ̃T δ,N
s = ι̃T

δ,N
s (λ0 + λ1Vs),

φ̃T δ,N
s (z) =

1

ι̃T
δ,N

s

(1 + m̃T δ,N
s (z))e−(γσc̄+σp)zφ(z)

=
1√
2π

exp
[
−1

2

(
z − z̄T δ,N

s

)2
]
,

(5.10)

respectively.
Using the approximations (5.2)-(5.10), define the approximate GE swaption price

P̃St(LT,N ,K) by

P̃St(LT,N ,K) = δBT δ,N
t ET δ,N

t

[
(L̃T,N

T −K)+
]

(5.11)



16

where L̃T,N
T = eỸ T,N

T and Ỹ T,N
T are given by

dỸ T,N
s =

{
−ι̃T

δ,N
s λ0 −

(
ι̃T

δ,N
s λ1 +

1
2
‖ς̃N (T − s)‖2

)
Ṽs

}
ds

+
√
Ṽs ς̃

N (T − s) · dWT δ,N
s +

∫ ∞

−∞
(σ̃N (T − s)z + µ̃N (T − s)) ν̃N (ds× dz),

dṼs =
[
κV̄ −

{
κ+ ςV ·

(
γςc̄ + ςp − ς̃T

δ,N
s

)}
Ṽs

]
ds+

√
Ṽs ςV · dWT δ,N

s ,

(5.12)

with (Ỹ T,N
t , Ṽt)′ = (Y T,N

t , Vt)′ where ν̃N (ds× dz) is the marked point process with
PT δ

-intensity kernel λ̃T δ,N
s φ̃T δ,N

s (z) dz.

5.3. Fourier Transform Method and GE Pricing Formula for Swaption.
Since the system dynamics of X̃T,N = (Ỹ T,N , Ṽ )′ admits an AJD structure under
PT δ,N , the Fourier transform method can be applied to X̃T,N . Define the function
ψT δ,N

t,X̃T,N
: C2 × R× R+ × [t, T ] → C by

ψT δ

t,X̃T,N (ξ, X̃T,N
s , s) = ET δ

s

[
eξ·X̃T,N

T

]
.

The function ψT δ,N

t,X̃T,N
is derived in analytic form in a similar way as shown in

Lemma 1.

Lemma 2. It follows that

ψT δ

t,X̃T,N ((ξ1, 0)′, (Ỹ T,N
s , Ṽs)′, s) = eαN (τ ;ξ1)+ξ1Ỹ T,N

s +βN (τ ;ξ1)Ṽs (5.13)

where τ = T − s, and

αN (τ ; ξ1) =

{
αN

0 (τ ; ξ1, τ0) if τ ∈ I0
αN (τn−1; ξ1) + αN

0 (τ − τn−1; ξ1, τn) if τ ∈ In,

βN (τ ; ξ1) =

{
βN

0 (τ ; ξ1, τ0) if τ ∈ I0
βN (τn−1; ξ1) + βN

0 (τ − τn−1; ξ1, τn) if τ ∈ In,

(5.14)

with

αN
0 (τ ; ξ1, τn) = ι̃T

δ,N
s λ0

[
exp

[
1
2
σ̃N (τ)ξ21 + (µ̃N (τ) + z̄T δ,N

s σ̃N (τ))ξ1

]
− ξ1 − 1

]
τ

− κV̄

[
bNn + dN

n

a
τ +

2
a

ln
[
1− bNn + dN

n

2dN
n

(1− e−dN
n τ )
]]
,

βN
0 (τ ; ξ1, τn) =

ιNn (1− e−dN
n τ )

2dN
n − (bNn + dN

n )(1− e−dN
n τ )

,

where

a = ‖ςV ‖2, bNn = ς̃N (τ) · ςV ξ1 − {κ+ ςV · (γςc̄ + ςp − ς̃T
δ

s )},

ιNn = 2ι̃T
δ,N

s λ1 exp
[

1
2
σ̃N (τ)ξ21 + (µ̃N (τ) + z̄T δ,N

s σ̃N (τ))ξ1

]
+ ‖ς̃N (τ)‖2ξ21 −

(
2ι̃T

δ,N
s λ1 + ‖ς̃N (τ)‖2

)
ξ1 − 2ι̃T

δ,N
s λ1,

dn =
√
|(bNn )2 − a ιNn | exp

[
i arg((bNn )2 − a ιNn )

2

]
.

Then the approximate GE swaption price is derived in the same way as in Propo-
sition 2.
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Proposition 4. Let N ∈ N, T ∈ (0, T † − (N + 1)δ] and K ∈ R++. Under
Assumption 1-3, it follows that for a given ASM equilibrium ((ĉi)i∈I, p,B) for E
where pt = B

ΛBu
α̂
c (t, c̄t), the approximate GE swaption price S̃Pt(LT ,K) satisfies

the formula

S̃Pt(LT ,K) = δBT δ,N
t

[
1
2
eαN (T−t;1)+Y T,N

t +βN (T−t;1)Vt

− 1
π

∫ ∞

0

Im
[
eαN (T−t;1−iv)+(1−iv)Y T,N

t +βN (T−t;1−iv)VtKiv
]

v
dv

+K

 1
π

∫ ∞

0

Im
[
eαN (T−t;−iv)−ivY T,N

t +βN (T−t;−iv)VtKiv
]

v
dv

] (5.15)

where Y T,N
t = lnLT,N

t , and (αN , βN )′ are given in (5.14).

Appendix A. Marked Point Process

A.1. Definition. A double sequence (sn, Zn)n∈N is considered where sn is the oc-
currence time of nth jump and Zn is a random variable taking its values on a
measurable space (Z,Z) at time sn. Define a random counting measure ν(dt× dz)
by

ν([0, t]×A) =
∑
n∈N

1{sn≤t, Zn∈A} ∀(t, A) ∈ T×Z.

This counting measure ν(dt× dz) is called the Z-marked point process.
Let λ be such that
(1) For every (ω, t) ∈ Ω × (0, T †], the set function λt(ω, · ) is a finite Borel

measure on Z.
(2) For every A ∈ Z, the process λ(A) is P-measurable and satisfies λ(A) ∈ L1.

If the equation E
[∫ T †

0
Ys ν(ds×A)

]
= E

[∫ T †

0
Ysλs(A) ds

]
holds for every A ∈ Z

for any nonnegative P-measurable process Y , then it is said that the marked point
process ν(dt× dz) has the P -intensity kernel λt(dz).

A.2. Integration Theorem. Let ν(dt×dz) be a Z-marked point process with the
P -intensity kernel λt(dz). Let m be a P ⊗ Z-measurable process. It follows that:

(1) If the integrability condition E
[∫ T †

0

∫
Z |ms(z)|λs(z) ds

]
< ∞ holds, then

the process
∫ t

0

∫
Z ms(z){ ν(ds× dz)− λs(dz) ds } is a P -martingale.

(2) If m ∈ L(λt(dz)), then the process
∫ t

0

∫
Z ms(z){ ν(ds× dz)− λs(dz) ds } is

a local P -martingale.

Proof. See p.235 in Brémaud [9]. �

Appendix B. Ito’s Formula and Girsanov’s Theorem

B.1. Ito’s Formula. Let X = (X1, ..., Xn)′ be a n-dimensional semimartingales,
and g be a real-valued C2-function on Rn. Then g(X) is a semimartingale of the
form

g(Xt) = g(X0) +
n∑

i=1

∫ t

0

∂

∂xi
g(Xs−) dXi

s +
1
2

n∑
i=1

n∑
j=1

∫ t

0

∂2

∂xi∂xj
g(Xs−) d〈Xic

s , X
jc
s 〉

+
∑

0≤s≤t

{
g(Xs)− g(Xs−) +

n∑
i=1

∂

∂xi
g(Xs−) ∆Xi

s

}
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where Xic is the continuous part of Xic and 〈Xic, Xjc〉 is the quadratic covariation
of Xic and Xjc.

B.2. Girsanov’s Theorem.
(1) Let v ∈

∏d
j=1 L2 and m ∈ L1(λt(dz)× dt). Define a real-valued process Λ

by
dΛt

Λt−
= −vt · dWt −

∫
Z
mt(z) { ν(dt× dz)− λt(dz) dt} ∀t ∈ [0, T †)

with Λ0 = 1. If E [ΛT † ] = 1, then there exists a probability measure P̃ on
(Ω,F ,F) given by the Radon-Nikodym derivative dP̃ = ΛT † dP such that:
(a) The measure P̃ is equivalent to P .
(b) The process given by W̃ = Wt +

∫ t

0
vs ds for every t ∈ T is a P̃ -Wiener

process.
(c) The marked point process ν(dt×dz) has the P̃ -intensity kernel λ̃t(dz)

such that λ̃t(dz) = (1−mt(z))λt(dz) for every (t, z) ∈ T× Z.
(2) Every probability measure equivalent to P has the structure above.

Appendix C. Basic Concepts in Bond Markets

C.1. Feasible, Self-Financing, and Admissible Portfolios. Let X denote a
real-valued P-measurable process. The discounted process of X is defined by X̃B =
X
B . Let B̃ denote the discounted bond price family (1, (B̃TB)T∈T). In bond markets
with jump-diffusion information, notions of feasible, self-financing, and admissible
portfolios are defined as follows.

Definition 6. Let B ∈ B.
(1) A portfolio ϑ is a feasible portfolio at B if and only if it follows that:

Btr
B
t ϑ

0
t ∈ L1,

∫ T †

t

|BT
t r

T
t | |ϑ1

t (dT )| ∈ L1

∫ T †

t

|BT
t v

T
t |ϑ1

t (dT )| ∈ L2,

∫ T †

t

|BT
t m

T
t (z)| |ϑ1

t (dT )| ∈ L1(λt(dz)× dt).

Let Θ(B) denote the space of feasible portfolios at B.
(2) A feasible portfolio ϑ ∈ Θ(B) at B is a self-financing portfolio at B if and

only if its value process satisfies

Vt(ϑ) = V0(ϑ) +
∫ t

0

ϑ0
s dBs +

∫ t

0

∫ T †

s

ϑ1
s(dT ) dBT

s ∀t ∈ T.

(3) A feasible portfolio ϑ ∈ Θ(B) at B is an admissible portfolio at B if and
only if there exists a nonnegative number b such that ṼB

t (ϑ) := Vt(ϑ)
Bt

≥ −b
P -a.s.

C.2. Arbitrage-Free Markets and Risk-Neutral Measures. In bond markets
with jump-diffusion information, definitions of arbitrage portfolio, arbitrage-free,
and risk-neutral measure are given in the following.

Definition 7. Let B ∈ B.
(1) A self-financing portfolio ϑ ∈ Θ(B) at B is an arbitrage portfolio at B if

and only if there exist 0 ≤ t < T ≤ T † such that ϑs = 0 for every s ∈ [0, t)
and either of the following:
(a) Vt(ϑ) ≤ 0 P -a.s., and VT (ϑ) > 0, i.e. VT (ϑ) ≥ 0 P -a.s. and

P ({VT (ϑ) > 0}) > 0.
(b) Vt(ϑ) < 0, and VT (ϑ) ≥ 0 P -a.s.
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(2) Markets are arbitrage-free at B if and only if there exists no arbitrage
portfolio in the space of admissible portfolios.

(3) A probability measure P̃B on (Ω,F) is a risk-neutral measure at B if and
only if P̃B is equivalent to P , and B̃ are local P̃B-martingales.

C.3. Approximately Complete Markets. Definitions of contingent claim, repli-
cable claim, and approximately complete are given as follows.

Definition 8. Let B ∈ B.

(1) For every T ∈ (0, T †], a contingent T -claim at B is a FT -measurable random
variable X such that X

BT
∈ L∞+ (Ω,FT ) where L∞(Ω,FT ) is the space of

almost surely bounded FT -measurable random variables.
(2) A contingent T -claim X is replicable at B if and only if there exists an

admissible self-financing portfolio ϑ ∈ Θ(B̃) such that its value process
satisfies VT (ϑ) = X.

(3) Markets are approximately complete at B if and only if for any T ∈ (0, T †]
and any T -contingent claim X there exists a sequence of replicable claims
(Xn)n∈N such that limn→∞

Xn

BT
= X

BT
in L2(Ω,FT , P̃

B).

Appendix D. Proofs

D.1. Proof of Proposition 1. For proofs of 1 and 2, see Kusuda [19]. It follows
from (3.5) and (3.6) in Assumption 3 that

ς(T − t) =
1 + δLT

t−
δLT

t−
(ςTt − ςT

δ

t ),

eσ(T−t)z+µ(T−t) − 1 =
1 + δLT

t−
δLT

t−

(
1 +mT

t (z)
1 +mT δ

t (z)
− 1
)
.

(D.1)

The dynamics of GE bond price process is

dBT
t

BT
t−

= rT dt+ vT
t · dWt +

∫ ∞

−∞
mT

t (z) {ν(dt× dz)− λt φ(z) dz dt } ∀t ∈ [0, T )

where rT = rB
t +vBt ·vT

t +λt

∫∞
−∞mB

t (z)mT
t (z)φ(z) dz. Then applying Ito’s formula

to the definition of LT yields for every t ∈ [0, T )

dLT
t =

1 + δLT
t−

δ

[{
rT
t − rT δ

t − vT δ

t · (vT
t − vT δ

t )− λt

∫ ∞

−∞
(mT

t (z)−mT δ

t (z))φ(z) dz
}
dt

+ (vT
t − vT δ

t ) · dWt +
∫ ∞

−∞

mT
t (z)−mT δ

t (z)
1 +mT δ

t (z)
ν(dt× dz)

]
=

1 + δLT
t−

δ

[{
(vBt − vT δ

t ) · (vT
t − vT δ

t )

− λt

∫ ∞

−∞
(1−mB

t (z))(mT
t (z)−mT δ

t (z))φ(z) dz
}
dt

+ (vT
t − vT δ

t ) · dWt +
∫ ∞

−∞

mT
t (z)−mT δ

t (z)
1 +mT δ

t (z)
ν(dt× dz)

]
.

(D.2)
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Dividing both sides of (D.2) by LT
t− and substituting (3.8) into the resultant equa-

tion yields

dLT
t

LT
t−

=
1 + δLT

t−
δLT

t−

[{
(γvc̄

t + vp
t − vT δ

t ) · (vT
t − vT δ

t )

− λt

∫ ∞

−∞
e−(γJc̄(z)+Jp(z))(mT

t (z)−mT δ

t (z))φ(z) dz
}
dt

+ (vT
t − vT δ

t ) · dWt +
∫ ∞

−∞

mT
t (z)−mT δ

t (z)
1 +mT δ

t (z)
ν(dt× dz)

]
. (D.3)

Substituting (3.2), (3.4), (3.7), and (D.1) into (D.3) give (3.9). Then substitut-
ing (3.11) into (3.9) yields (3.10). Moreover, it follows from Ito’s formula and
Girsanov’s Theorem that WT δ

t and λT δ

t φT δ

t (z) dz) are a PT δ

-Wiener process and
PT δ

-intensity kernels of marked point processes ν(dt× dz), respectively.

D.2. Proof of Lemma 1. Since ψT δ

t,X̃T (ξ, X̃s, s) is a PT δ

-martingale, it follows

from Ito’s formula that ψT δ

t,X̃T ((ξ1, 0)′, X̃s, s) satisfies

∂ψT δ

t,X̃T

∂s
+
∂ψT δ

t,X̃T

∂x1

{
−ι̃T

δ

s λ0 −
(
ι̃T

δ

s λ1 +
1
2
‖ς̃(T − s)‖2

)
Ṽs

}
+
∂ψT δ

t,X̃T

∂x2

[
κV̄ −

{
κ+ ςV ·

(
γςc̄ + ςp − ς̃T

δ

s

)}
Ṽs

]
+

1
2

∂2ψT δ

t,X̃T

∂x2
1

‖ς̃(T − s)‖2Ṽs

+
∂2ψT δ

t,X̃T

∂x1∂x2
ς̃(T − s) · ςV Ṽs +

1
2

∂2ψT δ

t,X̃T

∂x2
2

‖ςV ‖2Ṽs + ET δ

s

[
∆ψT δ

t,X̃T

]
= 0. (D.4)

Thus, we have

ψT δ

t,X̃T ((ξ1, 0)′, (x1, x2)′, s) = eα(τ ;ξ1)+ξ1x1+β(τ ;ξ1)x2 (D.5)

where τ = T − s and (α, β)′ satisfies the following system of ODEs

α′(τ) = −ι̃T
δ

s λ0ξ1 + κV̄ β(τ) + ι̃T
δ

s λ0

(∫ ∞

−∞
eξ1(σ̃(τ)z+µ̃(τ))φ̃T δ

s (z) dz − 1
)
,

β′(τ) = −
(
ι̃T

δ

s λ1 +
1
2
‖ς̃(τ)‖2

)
ξ1 −

{
κ+ ςV ·

(
γςc̄ + ςp − ς̃T

δ

s

)}
β(τ)

+
1
2
‖ς̃(τ)‖2ξ21 + ς̃(τ) · ςV ξ1β(τ) +

1
2
‖ςV ‖2β2(τ)

+ ι̃T
δ

s λ1

(∫ ∞

−∞
eξ1(σ̃(τ)z+µ̃(τ))φ̃T δ

s (z) dz − 1
)
.

(D.6)

with the initial condition (α(0; ξ1), β(0; ξ1))′ = (0, 0)′. This system of ODE is
rewritten as

α′(τ) = κV̄ β(τ) + ι̃T
δ

s λ0

(
exp

[
1
2
σ̃(τ)ξ21 + (µ̃(τ) + z̄T δ

s σ̃(τ))ξ1

]
− ξ1 − 1

)
β′(τ) =

1
2

(
aβ2(τ) + 2bnβ(τ) + cn

)
,

(D.7)
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where

a = ‖ςV ‖2, bn = ς(τn) · ςV ξ1 −
{
κ+ ςV ·

(
γςc̄ + ςp − ς̃T

δ

s

)}
,

cn = ‖ς(τn)‖2ξ21 −
(
2ι̃T

δ

s λ1 + ‖ς(τn)‖2
)
ξ1

+ 2ι̃T
δ

s λ1

(
exp

[
1
2
σ̃(τ)ξ21 +

(
µ̃(τ) + z̄T δ

s σ̃(τ)
)
ξ1

]
− 1
)
.

Thus, the solution for this system of ODEs is given by (4.11).
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