
 
 
 
 

 
 

CRR DISCUSSION PAPER SERIES  A 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Center for Risk Research   
Faculty of Economics  
SHIGA UNIVERSITY 

 
 
 
 

1-1-1 BANBA, HIKONE,  
SHIGA 522-8522, JAPAN 

 

 

Discussion Paper No. A-13 
 
 

 
Risk Aversion and Expected Utility: 

The Constant-Absolute-Risk Aversion Function and its Application to Oligopoly 

 
 

Yasuhiro SAKAI 

 

November 2014 
  

 
 
 
 
 
 
 
 



 1 

 
 
 

Risk Aversion and Expected Utility: 
The Constant-Absolute-Risk Aversion Function and its Application to Oligopoly* 

 
 

by Yasuhiro SAKAI 
Professor Emeritus, Shiga University 

 
 
 
 
Abstract: 
  The purpose of this paper is to carefully investigate the relationship between the 
concepts of risk aversion and expected utility, with a focus on the constant-risk-aversion 
function and its application to oligopoly theory.  Whereas there is now a growing 
literature in risk, uncertainty and the market, the operational theory of risk-averse 
oligopoly has been rather underdeveloped so far．One of the reasons for such 
underdevelopment is that the established concept of risk aversion remains too abstract 
rather than reasonably operational, whence very few economists have dared to study 
the economic consequences of a change of risk aversion by firms. 
   In this paper, we attempt to combine the constant-absolute-risk aversion function 
developed by K. J. Arrow and J. W. Pratt, two great economists of the 20th century, and 
the normal distribution function invented by K.F. Gauss, a mathematical genius of the 
19th century:  The resulting situation may be called the KARA-NORMAL case.  We 
intend to invent a very useful mathematical theorem for this specific yet important case, 
and then apply it to the theory of risk-averse oligopoly.  In particular, the impact of 
increasing risk aversion on the outputs of duopolies are carefully examined.  It is 
shown among other things that the comparative static results depend on the degree of 
risk aversion and the state of product differentiation.              
 
Key words:   Risk aversion, expected utility, oligopoly.       
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1. Introduction 
 
   We live in the world of risk and uncertainty.  In this world, a single act may not 
necessarily yield a single outcome. It is very common that one act results in many 
outcomes:  Which one really happens among those outcomes depends on the state of 
the world we are in.   
     It is said that a farmer is presumably the biggest gambler there is.  Let us 
consider how and to what extent risk and uncertainty affect agriculture.  As a matter 
of fact, whether or not rice harvest in fall is good or bad is determined by a variety of 
weather conditions in spring and summer such as temperature, sunlight hours, rainfall, 
typhoon and injurious insects.  Besides, the business condition of sightseeing industry 
is more or less affected by unknown factors including economic and political affairs. 
     When we discuss human behavior under risk and uncertainty, there are two key 
concepts play a very important role.  They are:  risk aversion and expected utility.  
The purpose of this paper is to scrutinize the relationship between these concepts, 
whence shedding a new light on the impact of risk and uncertainty on many economic 
activities. 
     In reality, risk aversion and human behavior are closely intermingled.  In his 
remarkable book (1970) , K.J. Arrow, a great economist and Nobel prize winner, once 
remarked: 1) 

 
     "From the time of Bernoulli on, it has been common to argue that individuals tend 
  to display aversion to the taking of risks, and that risk aversion in turn is an 
  explanation for many observed phenomena in the economic world." 
 
     In this paper, we would like to discuss more specifically the measure of absolute 
risk aversion and demonstrate how, in connection with the expected-utility hypothesis, 
it may be employed to obtain concrete and useful results in economic theory. 
     As was pointed out by above, Daniel Bernoulli (1700~82) who was a member of the 
famous Bernoulli family of mathematical geniuses, wrote a epoch-making paper on 
decision making under risk.  He was the first scholar to introduce the expected utility 
hypothesis to solve the St. Petersburg paradox in the game of tossing coins. From the 
time of Daniel Bernoulli to modern times, there have been rather irregular rises and 
declines in the economics of risk and uncertainty until the 1970s when many economists 
as a group emerged in the economics profession.  Among those economist were K.J. 
Arrow and J. W. Pratt, who intensively discussed how and to what degree individuals 
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displayed risk aversion in economic phenomena.2) 

     More specifically, we would like to combine the constant-absolute-risk-aversion 
function developed by economists including K.J. Arrow and J.W. Pratt in the latter half 
of the 20th century, and the normal distribution function mainly invented by K.F. Gauss, 
a mathematical genius of the 19th century.  Hopefully, such combination will produce a 
set of nice results in the 21st century.   
    The resulting situation aforementioned may be called the KARA-NORMAL case.  .     
We intend to introduce a very powerful mathematical theorem for this specific yet 
important case, and then apply it to the theory of risk-averse oligopoly.  In particular, 
the impact of increasing risk aversion on the outputs of duopolies are carefully 
examined.  It shown among other things that the comparative static results depends 
on the degree of risk aversion and the state of product differentiation.3) 

    The contents of this paper are as follows.  The next section will discuss how to 
measure risk aversion, and then focus on the CARA-NORMAL case.  This constitutes 
the core of the paper.   Section 2 will be concerned with its applications to oligopoly 
theory.  Concluding remarks will be made in the final section 4. 
   

2. How to measure risk aversion 
      
2-1.  Risk aversion        
     "He that fights and runs away may live to fight another day." 
     "Do not put all eggs in one basket."  
     As the saying goes, people tend to keep away from any possible risk.  When they 
find that the risk in question is unavoidable, they tend to minimize it by means of risk 
spreading or purchasing insurance. 
     In literature, to stay or to run away may be the question.  This is certainly the 
simple world of black and white.  The real world where we live is more complex、
however, presumably composing a delicate layer of grey zones.  Even if people face the 
same risk, the degree to which they avoid it may belong to a personal matter:  Jack 
may display stronger risk aversion than Betty.  The question to ask is how to measure 
the personal degree of risk aversion in conjunction with the traditional theory of 
expected utility.  In what follows, I will summarize the theory of risk aversion already 
developed by K.J. Arrow, J. Pratt and their followers, and then attempt to invent a set of 
new techniques for the purpose of applications to oligopoly and many other problems. 
       In order to discuss the question of risk aversion, it is very convenient to assume 
that a person in question is asked to choose one out of the following prospects: 
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    Prospect (A):  income x  with probability 1. 
    Prospect (B):  income x－h  with probability 1/2, 
                  income x + h  with probability 1/2.   
 
     Prospect (A) stands for a fixed amount of income x, whereas Prospect (B) indicates 
a random income (x±h) with an equal chance of gaining or losing h. Observe that both 
prospects guarantees the same amount of average income x.  It is naturally expected 
that a man in the street is risk averse, whence he tends to prefer fixed income (A) to 
random income (B) .  According to the traditional expected theory, this observation 
leads us to the following inequality: 
         U (x) ＞ (1/2) U (x－h) + (1/2) U (x + h).                           (1) 
     Graphically speaking, this shows that a risk averse person has a concave utility 
function, and vice versa.  In a similar way, it would be an easy job to see that a risk 
loving person has a convex utility function. 
     Concerning the choice between two prospects, let us keep away from fifty-fifty 
chance for a while, and turn our eyes to a third prospect. 
 
     Prospect (C) : income x －ｈ with probability 1 －ρ, 
         income x + h  with probability ρ. 
 
     As is easily seen, Prospect (C) is of a more general form than Prospect (B) since ρ 

can take any value of the unit interval [0, 1].  Now consider the choice between 
Prospects (A) and (C).  If the value of ρ is near zero, an ordinary person likes  
Prospect (C) better.  If it is near unity, he or she likes Prospect (A) better.   
     Now consider some intermediate values of ρ.  When ρ = 1/2, a risk averse 
person still prefers (A) to (C) as was seen above.  If we assume that the utility function 
is continuous and smooth, we may find a certain value ρ*  between 1/2 and 1 so that 
the following equality holds. 
     U (x) = (1－ρ*)U(x －ｈ）+ ρ*U (x + h).                              (2) 
     The value of ρ* relative to (1－ρ*) represents how much weight a risk averse 
person must give to a pair of gain (x + h) and loss (ｘ－h) so that both prospects (A) and 
(B) may have just the same value.  It is  naturally expected that a more risk averse 
person has a more strongly concave utility function, and thus a lager value of ρ*.  The 
graphic illustration of (2) can clearly be seen in Figure 1.  
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Figure 1  Making the two prospects equal values: 
          U(x)=(1-ρ*)U(x-h)+ρ*U(x+h) 
 
 

 

 
 
 
 In calculus, the concept of the Taylor expansion is generally a very powerful tool.  

There is no exception for the case of risk aversion.  If we employ the theorem of Taylor 
expansion series, it follows from (2) that 
    U (x) = (1－ρ*)｛U(x)－h U' (x) + (h2/2)U" (x) + … ｝ 
      + ρ*｛U (x) + h U' (x) + (h2/2)U" (x) + … ｝.                   (3) 
     If we do some calculations, it follows from (3) that 
     0  =  h U' (x) (2ρ*－1) + (h2/2) U" (x) + …, 
which leads us to obtain 
        ρ* = (1/2) + (h/4) R* + terms of higher order in h,                    (4) 
in which 
        R* = －U" (x) / U' (x) .                                              (5) 
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     The value of R* represents a measure of risk aversion, being specifically named 
the absolute risk aversion.  It is noted that the value of R*  is closely connected with 
the minus of U " (x) which in turn shows the degree of concavity of the utility function:  
Namely, a stronger risk averter has a stronger concave utility.  
     "So many men, so many minds." 
     This is a famous maxim showing that the degree of risk aversion varies person to 
person.  Someone may be very prudent and tend to keep the maximum distance from a 
possible danger, whereas others may be less careful and sometimes dare to challenge 
the danger.  There are clearly a wide intermediate range between these two extremes. 
Besides a man's mind is subject to change, and may change situation to situation:  A 
usually prudent man may suddenly change his mind and display a more brave behavior 
than before.   
     If we keep these facts in minds, we need to invent a new approach to human 
behavior.  It is high time for us to invent a operational theory of risk aversion, so that 
we may discuss quantitatively rather than qualitatively the welfare implications of a 
possible change of risk aversion.   This is the problem we are going to turn to in the 
next section.          
 
2-2  The CARA -NORMAL case      
     In this section, we would like to combine the two functions that are important in 
quantitative analysis.  They are:  the constant-absolute-risk-aversion function 
developed by K.J. Arrow and J.W. Pratt , two great social scientists of the 20th century;  
and the normal distribution function invented by K.F. Gauss, a mathematical genius of 
the 19th century.  Such an academic combination across the two centuries may be 
named the CARA-NORMAL case, and is expected to produce a series of nice 
quantitative properties. 4) 

     As was seen in (5), the absolute-risk-aversion function is provided by  R*(x)  = 
－ U" (x) / U ' (x) .  If we put R*(x) = R  where R denotes a positive constant, and 
integrate both sides of this equation, we immediately obtain the following equation. 
     U (x) = a －ｂ exp (－R x ）.                                            (6) 
     This is clearly what we may call the constant-absolute-risk-aversion function, or in 
short the CARA function.  The CARA function is a sort of exponential function, and     
depicted in Figure 2.  It is so simple and beautiful:  It is increasing, concave and 
bounded above, with the upper bound  a.   
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 Figure 2  The constant-absolute-risk aversion function: 
            U(x)=a-b exp(-Rx) 
 

 

 
 
 
     Let us remind the reader of the historical fact that a simple and beautiful function 
was first introduced by K.F. Gauss, one of the greatest mathematicians we have ever 
produced――the normal or Gaussian distribution function N (μ, σ2）with average μ 

and variance σ2. More specifically, the probability density function Φ(α~ ) of a 
stochastic variable α~  is written by  
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     Now, consider the case where the utility function is given by (6) and the 
probability density function by (7).  Then in this special KARA-NORMAL case, we can 
skillfully escape from the computational jangle in which we would usually be involved 
and got lost, and quantitatively find the concrete value of the expected utility: 

ααΦα　　α ~)~()~;()~;( dxUxEU ∫
∞

∞−
=    . 

     We are now in a position to establish the following mathematical results for the 
CARA-NORMAL case.  
 
Theorem 1  (The CARA-NORMAL Case): 
     Let α~ ～N (μ、σ2）and k be a constant.  Then we obtain the following properties:  
  (i)  E exp [ kα~ ] = exp [ kμ + (1/2) k2 σ2] , 

  (ⅱ)  E exp [－kα~ 2]  = 
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     It is perhaps needless to say that this theorem per se is not novel in advanced  
statistics.  To my knowledge, however,  it is hardly referred to in our economic science.  
Under such circumstances, I think that it is worthwhile to give a detailed proof of the 
theorem here. 
     To begin with, it is noted that the process to prove Property (ⅰ) corresponds well 
to the one to obtain the moment-generating function that is commonly used in statistics. 
     By view of  (7), we can immediately have  
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     We note that  
     α~ 2－2μα~ +μ2－2σ2 kα~  
     = [α~ －(μ+kσ2)]2 － 2σ2 [kμ+(1/2)k2σ2 ] .                             (9) 
     If we substitute (9) into (8), we obtain 
     E exp [kα~ ]  
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    Taking account of the property of the normal distribution N（μ+kσ2, σ2),  we 
find that 
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     By substituting Eq.(11) into (16), we immediately obtain 
       E exp [ kα~ ]  = exp [ kμ + (1/2) k2 σ2], 
which proves Property (ⅰ）. 
     Property (ⅱ）will be proved in a similar fashion.  If we do integral calculation, it 
is not hard to obtain 
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 If we substitute (13) into (12), we obtain 
       E exp [－kα~ 2] 
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    If we notice the property of the normal distribution  N (μ/( 1 + 2kσ2), 
σ2/(1 + 2kσ2 ) ), the following equality obviously holds. 
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     Therefore, if we take care of both equations (14) and (15), we can find 
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which is just the same as Property (ⅱ）. This completes the proof of Theorem 1. 
     Let us get back to the CARA -NORMAL case in which the utility function U(x) is 
given by the constant-absolute-risk aversion function, and the stochastic variable α~  
follows the normal distribution function.  For loss of generality,  we may assume  a = 
b = 1,  so that (6) above simply reduces to  
         U(x) = 1－exp (－Rx）.                                            (16) 
Then applying Theorem 1(ⅰ）to (16), we immediately have 
        EU(x) = 1－E exp (－Rx) 
              = 1－exp [－Rμ+ (1/2)R2σ2]                                   (17) 
     In order to find the indifference curve for the CARA-NORMAL case, let us put 
EU(x) = a constant .  Then we immediately obtain －Rμ+ (1/2)R2σ2   = a constant .  
We may let this constant term equal to (－eR ) where e  is a constant.  Thus it is easy 
to find that 
     μ= (1/2)Rσ2 ＋e     ( e is a constant) .                                 (18) 
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Figure 3  The CARA function and its indifference curves: 
          μ= (1/2)Rσ2+e  (e is a constant) 
 
 

 

 
     For this special case, Figure 3 depicts a class of indifference curves when  e  = 0, 
1, 2, 3.  Each indifference curve is upward-sloped, and in fact a straight line with its 
slope R /2.  When a man displays stronger risk aversion, he is expected to have steeper 
indifference lines. 
     In general, the utility curve of a risk averse man is concave, whence the following 
Jensen's inequality holds. 
      EU (x) ＜ U (Ex) = U(μ).                                           (19) 
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  Let us introduce a risk premium π* so that the inequality mentioned above may 
become an equality. 
      EU(x) = U (μ－π*).                                                 (20) 
     The value of π* indicates the maximum amount of extra money a risk averter is 
willing to pay for a 100% sure income in exchange for a risky income.  The relation 
between risk aversion and risk premium ρ* can easily be understood in Figure 4.  

In the special case of the CARA-NORMAL case, we can proceed more and do direct 
computations.  In fact, if we make use of  (17), we obtain 
     1－exp [－Ｒμ+ (1/2)R2σ2〕= 1－exp [－Ｒ(μ－π*) ], 
from which clearly follows  
     π* = (1/2) Rσ2.                                                     (21) 
     This equation has significant meaning.  In the case of the CARA-NORMAL case, 
the amount of risk premium π* is just equal to the half of the product of the degree of 
absolute risk aversion R and the value of variance σ２ . 
      
 
 
 Figure 4   Risk aversion and risk premium: 
             EU(x)  =  U(μ-π*) 
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As is naturally expected, an increase in R or σ2  corresponds well to a rise in π*.  It 
should be noticed that such a correspondence holds not only locally, but also very 
globally.  Surely, such a global property represents one of the nicest results we can 
derive from the CARA-NORMAL specification.             
 
  3.  Applications to Oligopoly 
 
     As the saying goes, seeing is believing.  In general, if we focus on the CORA-  
-NORMAL case, we are able to simplify the computation process very significantly with 
much loss of generality, and sometimes help get out of the mathematical jungle in which 
we would be miserably involved.  This claim will be confirmed in the application of the 
results associated with the CORA-NORMAL specification into oligopoly theory 
operating under demand risk.  
     In order to make the matter clear, let us take care of simple duopoly.  There are 
two firms in an industry:  Firms 1 and 2.  Let x i ≧ 0 be the output level firm i, and pi  

≧ 0 its unit price level  ( i = 1, 2).  Suppose that the demand equations are given by 
linear equations: 
 
       p1 = α－β( x1 + θx2 ) ,                                           (22) 
       p2 = α－β( x2 + θx1 ),                                            (23)  
 
in which  α stands for a common demand intercept.  Besides, we assume that β 

is a positive constant and θtakes any value out of the unit interval [－1, 1].  More 
specifically, the  value of θ is a measure of the substitutability of the two goods: 
Namely,  the goods are substitutes, complements or independents according to whether  
θ is positive, negative or zero.   We may assume without loss of generality that the 
value ofβ equals unity.  5)     
     Suppose that the cost functions of the firms are provided by linear equations:              
     C i (x i)  =  c i x i       (i = 1, 2) .                                      (24) 
     We assume here that the unit cost  c i  of each firm is a constant , and ignore the 
existence of fixed costs.  Then in the light of  (23) and (24), the profit  Πi  of firm i  
is shown by 
     Πi  =  p i x i－c i x i 
         =   (αi－c i－x i －θx j ) x i    (i, j = 1, 2; i ≠j ) .               (25) 
     Now consider the situation in which the two firms are subject to the same demand 
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risk.  In other words, when each firm determines its production plan, it cannot foresee 
ex ante how well its product will be sold.  For instance, a beer producer cannot exactly 
predict the amount of beer sales in the coming summer, since its production critically 
depends upon many whether conditions such as temperature, sunshine hours, rainfall 
and the like.  Besides,  it should be noted that product differentiation is rather 
common in the beer industry:  The two brands of beer may be competitive,  
complementary or independent.   
   In order to introduce such demand risk, it is convenient to assume that the common 
demand intercept α is now a stochastic variable :  Therefore , we will write α~  
 with a wave attached.  In particular, let us suppose that this α~  follows the normal 
distribution N (μ, σ2 ) with meanμ and varianceσ2 .   
     Now consider the case in which each firm displays risk aversion and its utility 
function is given by the constant-absolute-risk aversion function.  In other word, we 
will make full use of CARA-NORMAL specification.  In this important case,  the 
utility of the profit of firm i  may be expressed by the following exponential function: 
     U i (Πi ）= 1－exp [－R i Πi ]    (R i＞0; i = 1,2) .                         (26) 
     As we discussed in the last section, the important feature of the utility function 
(26) is that the degree of absolute risk aversion is a constant  R i .  A  greater (or a 
smaller)  value of R i represents a greater (or a smaller) degree of risk aversion on the 
part of firm i. 
     We are in a position to define the Cournot-Nash equilibrium (x1*, x2*) under 
demand risk in the following way: 

       [ ])~;,(maxarg *
211~

*
1 1

αΠ　 xxUEx ax=
      

       [ ])~;,(maxarg 2
*

12~
*

2 2
αΠ　 xxUEx ax=

 

 
     Once the Cournot-Nash equilibrium is reached, each firm has no incentive to 
deviate from it.  In what follows, we will attempt to derive the numerical values of the 
equilibrium solution under demand risk. 
     In the light of (25) and (26), we can find that 
   E U 1 (Π1）= 1－E exp [－R１x1 (α~ －c1－x1－θx2 ) ] 
              = 1－E exp [－R１x1α~ ]×exp [ R1x1(c1+x1+θx2) ].                 (27) 
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  We recall that α~  per se is a stochastic variable following the normal distribution N 
(μ,σ2).  Then we can make use of Theorem 1 above to obtain 
   E exp [－R１x1α~ ] =  exp [－R１x1μ+ (1/2)R12x12σ2 ] .                                   (28) 
     By substituting (28) into (27), we obtain      
  E U 1 (Π1）= 1－exp｛－R１x1 [μ－ｃ1－(1+R1σ2/2)x1－θx2 ] ｝   .       (29) 
     If we differentiate (29) with respect to x1 and put the resulting partial derivative 
just zero, we find that 
      μ－c1－(2+R1σ2）x1－θx2 =  0 .                                    (30) 
     In a similar fashion, if we now differentiate (29) with respect to x2, and put the 
resulting partial derivative just zero, it is not difficult for us to derive 
       μ－c2 －(2+R2σ2）x2－θx1 =  0 .                                 (31) 
     The twin equations (30) and (31) respectively indicate firm 1's and firm 2's 
reaction functions under the present CARA-NORMAL specification.  If we think of 
these equations as a system of simultaneous equations, and attempt to solve for the pair 
of solutions (x1*, x2*), then we are able to find the Cournot-Nash equilibrium pair in the 
following way: 
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      Therefore, the amounts of equilibrium outputs depend on the five factors.  They 
are:  ① The value of μ, namely the average value of changeable demand; ② The 
values of c1  and c2 that represent the cost conditions of the two firms; ③ the value of 
θ, or the degree of production differentiation, ④ the value of σ2, or the degree of the 
demand risk; and ⑤ the values of R1 and R2 , or the degrees of risk aversion on the 
part of the two firms.   
    Presumably, there are a variety of comparative static analyses we are able to carry 
out.  In this paper, however, we would like to investigate Case ⑤ only.  In other 
words, we are interested in scrutinizing how and to what extent changes in R1 or R2 
affect the values of x1* and x2*. 
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 - Figure 5   Cournot duopoly equilibrium: 
           The two goods are substitutes (θ>0) 
 
 

 
 
 
      We are facing the situation of product differentiation.  The two goods may be 
substitutes (θ＞ 0), complements (θ＜ 0), or independent (θ= 0 ).  Let us begin our 
inquiry with the case of substitutes.  Then the Cournot duopoly equilibrium is shown 
by Point Q in Figure 5.  The straight lines H1 and H2 respectively stand for the reaction 
line of firms 1 and 2, are negatively sloped.   
     The question to ask is how a change in R i (i = 1, 2) influences the position of Point 
Q.  Suppose that because of some reasons, firm 1 displays a stronger risk aversion than 
before.  Then as the value of R1 becomes greater, the reaction line H1 evolves clockwise 
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to H1', thus shifting the equilibrium point from  Q  to  Q '.  These changes result ih a 
decrease in x1 and an increase in x2.  Therefore, a stronger risk averse firm must 
decrease in its own output whereas the output of the other firm declines.  In short, the 
two risk-averse firms producing substitutable goods are competitive rivals:  One firm's 
gain is achievable only at the expense of the other firm.  
    
 
Let us turn to the case of complements.  As is seen in Figure 6, reaction lines H1 and H2 

of firms are positively sloped. 
 
Figure 6   The case of complementary goods (θ<0) 
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     The equilibrium point is indicated by the intersection of the reaction lines, i.e. 
Point Q .  An increase in R1  will cause a shift of reaction line H1 counter-clockwise to 
H1'.  Hence an increase (or decrease) in risk aversion on the part of one firm will 
decrease (or increase) not only the output of that firm, but also the one of the other firm.  
In short, in case the products are complements, the firms are in cooperative relation:  
All firms in an industry will thrive or decline together. 
       Now consider the third case in which the two goods are independent.  Then 
as is seen in Figure7, the reaction line H1 of firm 1 is vertical, whereas the reaction line 
H2 of firm 2 is horizontal.  When there is an increase in R1, the equilibrium point will 
shift to the left from Q to Q ' along the horizontal line H2. 
                    
 Figure 7   The case of independent goods (θ=0) 
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    In plain English, when firm 1 becomes more bearish in the face of demand risk, 
the production activity of the firm has to shrink, whereas the one of firm 2 remains to 
the same as before.  This is because x1 and x2 are  now independent:  Hence firm 1's 
psychological mind of being bearish or bullish has no effects at all on the production 
plan of firm 2.  .            
     To sum up, the comparative static results of oligopoly models under risk are 
largely dependent on the state of product differentiation and the degree of risk aversion.   
We have shown that the CARA-NORMAL specification is powerful enough to effectively 
derive quantitative results.     
 
4.  Concluding Remarks 
   
     "Gone are the days when my heart was young and gay …." 
     This is the first phase of a very popular song written and composed by Stephan 
Foster (1826~64), a great American composer.   When I was born in Osaka, Japan, my 
heart was surely very young and gay.  As the war broke between Japan and the U.S., 
however, the everyday life of my family became harder and more miserable.  I still 
remember the tragic days when a group of American B29 bombers dropped so many 
firebombs so many times over Osaka.  Fortunately, my family has survived during the 
air attacks, yet our painful wartime memory still lingers． After the war, people lost 
almost everything, hence they had nothing to be afraid of.  In other words, they 
displayed no risk aversion at all for making a living.               
     Since then, turbulent twenty years had passed before I became a still young and 
fairly ambitious student at Kobe University .  In the 1960s, the Japanese society was 
very unstable and often disturbed by railway strikes, mining shutdowns, street 
demonstrations and so on.  One day, the Diet Building was surrounded by so many 
active students, thus ceasing to do its proper function which is required to do.  Those 
students seemed to display a sort of risk preference for political reform.  
     In those restless days, I happened to read a collection of nice essays written by 
Kiyoshi Oka (1970), a great Japanese mathematician.  It was really a great inspiration 
for me.  He once remarked: 
      
      

"In the world of mathematics after the Second World War, there has been a new 
   research direction toward 《extreme abstraction》 emerged .  According to this 
   direction, very general results were welcomed for the sake of generality, whence 
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   more specific yet more fruitful discussions were underestimated or even neglected. 
   I am afraid that such unfortunate tendency still continues and is growing.  I feel 
   as if mathematicians became no longer human:  They were just wandering 
   from place to place in winter wilderness, could not see neither green leaves nor 
   lovely flowers.  Now I am firmly determined to drastically change the mathematical 
   trend from the "chilly winter wilderness" to the "warm spring warmth."  So I have 
   written a series of mathematical papers with lovely spring flavor."              
 
     It was no wonder that the teachings of legend Oka gave me an incentive to 
drastically change my life style:  I decided to go abroad for graduate study, looking for 
the spring warmth. 6)  When I took graduate courses at the University of Rochester, 
however, I was really shocked to see that many economics professors were eager to solve 
very abstract questions with no reference to warm human heart:  They seemed to 
wander from place to place in the chilly winter wilderness.  General equilibrium theory 
promoted by many Rochester professors represented the culmination of mathematical 
abstraction and generalization with no human heart .   
     After finishing my doctor thesis in mathematical economics, I got a chance to teach 
economic theory at the University of Pittsburgh.  Fortunately, Pittsburgh was a nice 
place to live:  Both professors and students had warm human heart.  It was at that 
time that I said good-by to the winter wilderness and attempted to write economics 
papers with lovely spring flavor.   
     In my opinion, as pointed out by late Professor Oka, there are two different kinds 
of problems in every science including mathematics and economics.  They are:  The 
problems of the chilly winder color, and those of the warm spring color.  Hopefully, this 
paper will help change the direction of economic science toward more human flavor.   
     To sum up, this paper aimed to investigate the relationship between risk aversion 
and expected utility, with a focus on the constant-risk-aversion function and iys 
application to oligopoly theory.  Whereas there is a growing literature in risk, 
uncertainty, and the market, the operational theory of risk-averse oligopoly has been 
rather underdeveloped so far.  One of the reasons for such underdevelopment is that 
the established concept of risk aversion remains too abstract rather than operational, 
whence very few economists have dared to study the consequences of a risk aversion 
change on oligopoly under imperfect information.  
     Needless to say, there remain so many unsolved problems in the related area of 
research.  It is our sincere hope that this paper will give a spring board to step up for 
the promotion of risk aversion theory and its application in economic science.     
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Footnotes 
  *  Financial support from the Japanese Ministry of Education, Culture, Sports, 
Science and Technology through Grant-in-Aid-for Scientific Research (C) 25512010 is 
gratefully acknowledged.  Thanks are also due to Mr. Masashi Tajima and staff 
members of the Risk research Center, Shiga University for editorial assistance.  All 
remaining errors are solely my responsibility. 
   1)  In the light of the history of economic thought, the year of 1970 is regarded as 
the birth year of the modern economics of risk and uncertainty.  It is in that year that  
K.J. Arrows' outstanding essays in risk-bearing and G. Akerlof's famous paper on the 
lemons market were both published.  See Sakai (1982, 2010). 
  2)  See Arrow (1965,70) and Pratt(1964). 
  3)  There is now a vast literature on the working and performance of oligopoly under 
information.  See Sakai (1990).  Unfortunately, very few papers have ever discussed 
the CARA-NORMAL case, however.  This paper intends to further develop this special 
yet important case. 
  4)   The CARA-NORMAL case was first introduced to oligopoly theory by Sakai and 
Yoshizumi (1991a, 91b), and later developed in related areas by several papers 
including Sakai and Sasaki (1996). 
  5)   For a detailed discussion on thus point, see Sakai (1990). 
  6)   When I began graduate courses in the United States, my life was really guided 
by Professor Oka's invaluable teachings:  Hence I had due respect for mathematics, but 
had no fear for American culture whatever.   I still remember the following inspiring 
words by Oka (1970): 
  "When I began my course work at the Department of Science, Kyoto University, I had 
too much owe for mathematics to specialize in it.  I have never thought, however, that 
foreign cultures were fearsome and overwhelming.  To my regret, the ordinary 
Japanese people tend to look at this matter from the opposite point of view:  Although 
they do not show due respect for mathematics, they are so afraid of foreign cultures.  I 
would like to emphasize that this is nothing but a terrible mistake".       
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