Structure of antichain partitions of a submodular
function and the essential coalition partition of a
decomposable convex game

Takeshi Naitoh*
April 3, 2006

Abstract We consider a generalization of Narayanan’s theorem describing that
the family {II'|1I" € Pg, Y xemp f(X) = minnep, Yoxen f(X)} forms a lattice,
where f is a submodular function on 2¥ and Py is the set of all partitions of E.
We extend Narayanan’s result on rooted forests. Moreover we show uniqueness of
essential coalition partition of decomposable convex games.
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1 Introduction

Let f be a function on 27 for a nonempty finite set £. A function f : 2¥ — R is called a
submodular function on 2F if

FX)+ f(Y) 2 f(XUY)+ (X NY) (1.1)

for all X, Y C E, where R is the set of real numbers. If —f is a submodular function, we
call f a supermodular function. For the purpose of solving problems in electrical network
theory, H. Narayanan [2] studied structure of the set of the partitions Py = {II'|Il' €
Py, f(II') = minpep, f(I1)}, where Pg is the set of all partitions of £ and f(II) =
S xen f(X). He showed that Py forms a lattice. In section 3 we show a generalization of
Narayanan’s Theorem on rooted forests.

Let N ={1,2,...,n} be a set of players. The basic model of cooperative game theory
comprises a set N of players the subsets S C N of which are coalitions. There is a
characteristic function v : 2 — R that assigns to each coalition S its value v(S). We
denote (NN,v) an n-person game in characteristic function form where v is a real-valued
function on 2% and v(0)) = 0. A characteristic-function game (N, v) is called a conver game
if the characteristic function v is supermodular. A convex game (N, v) is decomposable if
there is a decomposable partition of (IV,v) except for {N}. L. S. Shapley gave a theorem
on a necessary and sufficient condition for a convex game to be decomposable. In section
4 we show uniqueness of essential coalition partition of decomposable convex games.
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2 Definitions and preliminaries

A binary relation < on a nonempty finite set £ is called a partial order if it satisfies
reflexivity, antisymmetry, and transitivity. (£, <) is called a partially ordered set or a
poset for short. If for each x,y € E there exist least upper bound of {z,y} and greatest
lower bound of {z, y}, then we call the poset a lattice, and we write the least upper bound
of {x,y} as x V y and the greatest lower bound of {z,y} as A y.

Let P = (F,=) be a partially ordered set with a finite set E. A poset P = (F, <)
is called trivial if there exist no order-relations between pairs of elements of £. A subset
S C F is called order-ideal if ¢ < ¢ € [ implies ¢ € I. A subset S which consists of
pairwise incomparable elements with respect to P is called an antichain.

We denote by A(P) the set of anchichains of the poset P. With any S C F we

associate the order-ideal generated by S via
id(S) :=={x € E |z < sfor some s € S}.

Denoting by ST the collection of maximal elements of the poset P restricted to S. Note
that S* is an antichain and that every antichain A arises as A = (id(A))*. Hence for
A, B € A(P) two binary operations

AV B = (id(A)Uid(B))*
AANB = (id(A)nid(B))*

are defined. We remark that (A(P),V,A) is a distributive lattice.
A function f: A(P) — R is called a submodular function on A(P) if

J(A) +J(B) = J(AV B) + f(AN B) (2.1)

for all A, B € A(P). If poset P is trivial, then submodular properties (1.1) and (2.1) are
equivalent.

We extend the binary relation < of the poset P = (F, <) to pairs of antichains. For
A, B € A(P) we define A < B if for each a € A there exists an element b € B such that
a < b. If poset P is trivial, then A < B if and only if A C B.

Let g : A(P) — R be given. Throughout our investigations we will assume that g is
normalized, i.e., g(0) = 0.

3 A generalization of Narayanan’s Theorem on rooted
forests

The purpose of this section is to introduce a generalization of Narayanan’s Theorem 3.5
in [2].

For a poset P = (K, <), we call y an upper neighbor of x if ¥ < y and there is no
element z such that @ < z < y. A poset P = (F, <) is a rooted forest if each element of
the ground set F has at most one upper neighbor. Throughout this section we assume
that P = (F, <) is a rooted forest and that f : A(P) — R is a normalized submodular
function.



An antichain partition 1" of a nonempty finite set I/ is a set of disjoint nonempty
antichains of £/ whose union is £. An antichain subpartition 11 of a set F is a set of disjoint
nonempty antichains of £. Thus if £y C E and Il; is an antichain partition of Fy, then II;
is an antichain subpartition of £. We refer to an element NV; of an antichain subpartition
IT as a block of II. An antichain partition of F1(C F) is denoted by {Ny,..., N, Ilo(Fy —
Ui_, N;)} if it has blocks Ny,..., N, of an antichain subpartition of F; and blocks of
antichain partition (£ — U_; N;) consisting of singletons in Fy — Ui_; N; # 0, i.e.,
Ho(Ey — Uiy Ni) = {{e} |e € E1 —Ui_; Ni}. If we write Iy = {N,II5(0)}, then it means
Iy ={N}.

The collection of all antichain subpartitions (partitions) of E is denoted by ASPg
(APg). For 1,11, € ASPg we define I, <47 T, if and only if for each block M of II,
there exists some block N of 1I; such that M < N. We should notice that ASPg 1s not a
lattice but an upper semilattice with <45, However, by defining {0} <47 II € ASPg
and {0} <457 {0}, ASPr U {{0}} forms a lattice with <4%F". We denote the least upper
bound of {II;, Iy} as II; VA 11, and the greatest lower bound of {II;, II5} as I1; A% I1,.

Let ¢ be a real-valued function on A(P). For an antichain subpartition Il of E, we

define
g(In) = > g(X).

Xell

Lemma 3.1: Let g be a function defined on A(P). Let 1L, be an antichain partition of K
such that g(11.) = mingeap, g(11). Suppose that N € 1l and 11 is an antichain partition
of N. Then g(N) < Yonchi g(M;). O

Lemma 3.2: Let Ey, Ey € A(P) and ) # N C Ey. Let Il be an antichain partition of
Ey such that {N,Uo(Ey — N)}. If By < Ey, then

T(H) + T(HN) > T(H \ASP HN) + T(H AASP HN)
for all 1l € APg,.

Proof: LetII = {Xj,...,X;}. Since P is a rooted forest, we have id(X;)Nid(X;) = 0 for
each X;, X; € II. We should notice that F; < F; guarantees the existence of II AASE Ty,
Therefore

ran = X f(Xa+ X f(X),

id(X;)NN#£D id(X)NN=0
JMy) = f(N)+ > fHe)), (3.1)
e, € —N
Faoveroyy = 0 U X))+ Y ),
id(X;)NN#£D id(X)NN=0

FIIAY ) = Yo SXiAN)+ Y f({ed)) (3.2)

id(X)NN#D ci€E,—N
Since
U Xi= X;
id(X;)NN#£D id(X)NN#D



holds, we have
FOI) + F(ILy) = (FATVASP TLy) + T AP T1y))
= Y Jx)+rm -7V X)) - Y J(XAN)

id(X;)NN#£0 id(X:)NN#£0 id(X;)NN#£0
> 0.

The last inequality follows from the fact that ¢d(X;)’s are pairwise disjoint and that f is

a submodular function. O

Lemma 3.3: Let Fy,Fy € A(P) and O # F X By Let 1, € APg,, H2 € APg,,
and N € 112. For HN_: {N,lo(Ey — N)}, if f(lIl) = minpeapy, F1) a ]i( 2) =
minHeAPE2 f(H), then f(Hl \/ASP HN) == miﬂHeAPgl f(H) and f(Hl /\ASP HN) f( )

Proof: Let II; = {Xj, -+, X;}. By Lemma 3.2,

() + f(Iy) > (I vA57 Ty) + F(I AT Toy). (3.3)
On the other hand, by (3.1), (3.2), Lemma 3.1, and N C E, < F; = U!_, Xi,
FALAYPIN) — f(y) = > f(Xi AN)— f(N) > 0. (3.4)
id(X;)NN#£D

Hence, _ _
F(I) > F(I VAP T0y).
Since lIxy € APg, and Fy < Fy, 1} VASE Ty is an antichain partition of E;. Therefore,

T ASP _ .
FL VA TLy) = i (1)

Moreover, by using (3.3) and (3.4), we have f(Ily) = f(II; AT Tly). O

Theorem 3.4: Let FEy, Fy € A(P) and Ey < . Let Ty be an antichain partition
of By and 11y an antichain partition of L. If f(Ily) = minneap, f(Il) and f(Il) =
minge4py, FAD), then F(II,VASTLL) = Mine 4Py, F(A1) and fFALAYSTIL,) = minge4py, (.

Proof: Let us consider the two following cases, Cases (a) and (b).

Case (a): We show f(II; V4°" II,) = minneap,, f(II).
Let Hl = {Xl, Ce ,Xt}, H2 = {Nl, ceey Nr}, and HN@ = {NZ',H()(EQ — Nz)} (Z = 1, Ce ,T).
By Lemma 3.3,
- ASP T
AL VAT Ly, ) = i S(I).
Repeating the application of Lemma 3.3 with (II; VA" Iy, V457 ... vA5P Iy ) and
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41 for j =1tor—1, we have

T(Hl \/ASP HN1 \/ASP . \/ASP HNT) — 1min (H)



Note that II; VA57 Iy, VA7 ... vASP [Iy = 11, VAP 11,

Case (b): We show f(II; A**" II,) = minneap,, f(IT).
Let Hl = {Xl, Ce ,Xt}, H2 = {Nl, .. .,Nr}, and HN@ = {NZ',H()(EQ — Nz)} (Z = 1, Ce ,T).

From Lemma 3.3, we obtain
T(HM‘) = T(Hl NP ly,) (t=1,....7). (3.5)
Then, by the definition of Iy, we have

fl)= > fv) = > > fles}), (3.6)

N;€ll, N;€lly e €E2—N;

and moreover, we obtain

JAG AP IL) = 3 Y. X AN)

Ni€lly j:4d(X;)NN; #0

= > AN = > X J({ed) (3.7)

N;€ll, Ni€lly ex€E2—N;

From (3.6) and (3.7),

FL) = 37 f(lly) = F(IL AP IL) = 37 F(IL AP I, (3.8)
N;€ell, N;€lly

Therefore, combining (3.5) and (3.8),

F(Iy) = f(I, A 10y).

So, we have f(II; AT 11,) = Minmeapy, F(II). a

For a rooted forest P = (F, <) and a submodular function f: A(P) — R, we have

F{S}) = min f(II)

TEAP

for all S € A(P). Hence, from Theorem 3.4 we have the following corollary.

Corollary 3.5: For an antichain N, if Il = {Xy,..., X;} € Px —{{N}} satisfies f(II) =
f(N), then B B
FOUAMT{SY) = F({S}) (3.9)

forall S < N. O

Moreover, from Theorem 3.4 we have the following corollary.

Corollary 3.6: Let E; € A(P) and 11; € APg, (i = 1,2). If f(I1;) = mingeap, f(IT) (i =
1,2) and Ey A Ey # 0, then f(I1; Ally) = MiNMIe APy, ,p, F(I).



Proof: Since E1 A By < E; (i = 1,2), there exists II¥ € APg, Ag, such that

FOC) = min (I

HEeAPE) nr,

with 17 <SP 11, for each II;. Hence, we obtain

SO ALLG) = Hef{%gll/\@ f(II)
with HT A H; € APEl/\EQ‘
Since I} Ay € APg ap,, 113 ALy <57 11, ATly, and f is submodular with f(0) = 0,

we have

AL A L) S TG AT = | in (1), (3.10)
(3.10) and 11, A 1ly € AP ag, imply f(II; A ly) = MiNMeAPy, \p, (). a

4 Related topics in decomposable convex games

An n-person game with a coalition structure II in the characteristic function form is a
triple (N,v,II). If Il = {N}, then (N,v,II) is called an n-person game with a grand
coalition and denotes it as (NN, v) for convenience. A game (N, v, 1) is decomposable with
respect to 11 if
v(S)= > v(XinS). (4.1)
X,€ll
for all S C N. If Il € Py satisfies (4.1), then we call it a decomposable partition of (N,v).
L. S. Shapley [3] introduced the convex games and studied their properties. One of
his results is a necessary and sufficient condition for a convex game to be decomposable
with respect to given coalition structure.

Theorem 4.1 (Shapley [3]): A convex game (N,v) is decomposable if and only if

FIN) = f(X0) + -+ (X))

holds for some partition {X1, Xz2,...,X,} of N into p > 2 nonempty subsets, where
f = —0. O

If poset P = (N,=) is trivial, then A(P) = 2V. The collection of all subpartitions
(partitions) of £ is denoted by SPg (Pg). We define a partial order <7 on SPg by
defining 11, <57 I, if and only if each block of Il is contained in some block of II;. The
least (greatest) element of S Pg above (below) II; and I, in the partially ordered set S Pg
is denoted by II; V57 TI, (IT; AST T1,). Hence (3.9) implies

J(9) =1XinS) +---+ f(Xi0S)

for all S C N. Hence Corollary 3.5 is a generalization of the Shapley’s Theorem 4.1.
Moreover if poset P is trivial, then from Theorem 3.4 we have the following Narayanan’s

Theorem 3.5 in [2].



Theorem 4.2 ([2]): Let [ be a submodular function on Z_E for a nonempty finite set k.
Let Hl, HEE PE ]ff(Hl) = f(HQ) = miHHEPE f(H), then f(Hl \/SPH2) == f(Hl /\SPH2) ==
miHHepE f(H) O

In a convex game (N,v) a coalition S is called inessential if it has a proper partition
I ={5,...,5} € Ps—{{S}} such that v(S) = v(Il). Coalitions which are not inessen-
tial are called essential. For a convex game (N,v) we denote by & the collection of its
nonempty essential coalitions.

For X C N and ¢ = (2y,...,2,) € R", let (X) = Y,cx @i, where z(¢) = 0. The

core of a convex game (N, v) is defined by
Core(v) = { |z € R", 2(N) = v(N),¥YX C N: 2(X) > v(X)}.
The collection € gives a description of the core as follows:
(|2 € R",2(N) = v(N),YX € £: 2(X) > v(X)}.

A partition Il € Py — {{N}} is called an E-partition (essential coalition partition) of N
if each block of II is nonempty essential coalition. We note that the grand coalition N is
inessential if and only if v(N) = Y g e v(£;) for some E-partition II of N.

Theorem 4.3: Let (N,v) be a convexr game with inessential grand coalition N. Then
there exists a unique E-partition 11* of N such that v(N) = v(II*).

Proof: Suppose there exist two different E-partition 11y, [I; € Py such that
v(N) =o(Ily) = v(Ily).
This implies T(Il;) = v(1lz) = maxpep, O(11). Hence from Theorem 4.2 we have
v(N) = B(11, A°T 11,).
However since II; ASF 11, < 114, at least one block of 1I; is inessential. 0O

A convex game (N, v) is decomposable if and only if the grand coalition NN is inessential.

Let Py = {Il'|II' € Py, v(1l") = maxpep, v(1l)}.

Corollary 4.4: For a decomposable convex game (N,v) the E-partition of N is the min-
imum partition of lattice Py, t.e., /\1§I]€DPJ”(, I1. O
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