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Abstract. Though the calculation of exact bit error rate in some simple

chaotic shift-keying based systems has been reported by the same authors
recently, an e�cient approximation of bit error rate is still in demand. It is
due to the fact that the numerical calculation of exact bit error rate requires
a lot of time and high computer performance. The paper explores several new
approximations some of which can be calculated more easily, and shows the
e�ciency of new approximations. The comparison between a new and earlier
approximations is also given.

1. Introduction

Chaos-based communication systems have been attracted a lot of interest since it
can be the alternative of conventional modulation schemes in which trigonometric
wave functions are used. Because of the periodicity of trigonometric wave functions
the risk of interference in multiple user system is not low. Instead of trigonomet-
ric wave functions, chaotic sequences are used in chaotic modulation schemes and
both improvement and problems of the use of chaotic sequences have been reported.
Kennedy, Rovatti and Setti [3] is the �rst monograph in the area. The basic idea of
chaotic modulation is as follows: A digital signal is carried by a spreading sequence,
that is chaotic in our case, and goes through the channel where the sequence is cor-
rupted by noise, generally assumed to be additive white Gaussian noise (AWGN). A
receiver has to estimate the signal based on the corrupted sequence and therefore
error occurs. A correlation decoder is widely used to decode the signal and has
been proved to be the maximum likelihood estimator in coherent chaos shift-keying
systems by Lawrance and Ohama [6]. The importance of considering maximum
likelihood estimation has been suggested in Schmming and Hasler [9]. The per-
formance of modulation schemes including the choice of a chaotic map is usually
assessed by a bit error rate (BER), the error probability of estimation. Lawrance
and Ohama [6] gives the calculation of an exact bit error rate while other earlier
works, for example Abel et al [1], Kolumban [4], Lawrance and Balakrishna [5], Lip-
ton and Dabke [7], Milanovic et al [8], Sushchik et al [10], and Tam et al [11], are
based on either central limit theorem and give approximations of a bit error rate,
or computational simulations. Though the di�erence in the performance of mod-
ulation schemes could be assessed by central limit theorem based approximations,
the di�erence in the performance of chaotic maps could not be assessed because the
di�erence of exact bit error rates is so small. We should not use the approximation
based on simulation either unless su�cient statistical investigation is taken into
account. Therefore an exact bit error rate is required to assess the performance.
However, an exact bit error rate is not always calculated straightforwardly, espe-
cially when the spreading factor N is large, because numerical integration involves
a too complicated function. For example, when a chaotic map is tent map on an
interval [0; 1] and N = 20, the numerical integration of a function with 219 peaks
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on [0; 1] is required to obtain the exact bit error rate. Such numerical integration
is either poorly accurate or requires too much time to calculate, and thus an exact
bit error rate is not the practical measurement of the performance when spreading
factor is large. We therefore need a new approximation. What we require of a new
approximation is

(C1) To be a function of a chaotic map � , and preferably of a signal to noise ratio

(SNR) and the spreading factor N.
(C2) As a function of a chaotic map, if �1 is mapped to a less value than the value

�2 is mapped, an exact bit error rate with �1 is lower than one with �2, or
at least there is a strong positive correlation between the mapped values and
exact bit error rates.

(C3) To be calculated easily.

We will consider only coherent chaos shift-keying (CSK) systems , that is, all
information of a spreading sequence fXig is given to a receiver. It is because not
only coherent systems are simple but also we might assume that a good chaotic map
in coherent systems is also a good chaotic map in non-coherent systems. In section
2, we will give a brief explanation of CSK systems and the calculation of an exact
bit error rate based on Lawrance and Ohama [6]. In section 3, we will give new
approximations of a bit error rate based on Taylor expansion and see its e�ciency.
In section 4, we will modify the previous approximations so that it requires less
time to calculate. Section 5 is dedicated to discussion.

2. Coherent chaos shift-keying systems and exact bit error rates

In coherent chaos shift-keying systems, digital bit signal b (+1 or �1) is sent to a
receiver with being embedded in a spreading sequence fXig, which is generated by
a chaotic map �(z), c � z � d. The sequence is assumed to have been started with
a random value from an invariant distribution of the map, thus the each element
of the sequence has the common mean � and the common variance �

X

2. The
embedded signal is of the form � + b(Xi � �) and thus the bit is signed by either
leaving the chaotic sequence unchanged as Xi (b = 1), or reecting it about its
mean � as 2� � Xi, a form of chaotic modulation. To avoid the reected values
being out of range, the invariant distribution is assumed to be symmetric and so
� = (d � c)=2. Modulated signals go through the transmission channel and are
corrupted by AWGN, f"ig, with variance �2: Thus the received signal is of the
form Ri = �+ b(Xi��)+"i. A receiver is assumed to have all information of fXig
in coherent systems. If not, the systems are considered as non-coherent systems.
We will treat only coherent systems in this paper. A receiver thus estimates b by
fRig and fXig. A widely known correlation decoder gives maximum likelihood

estimation b̂ in coherent CSK systems and it is of the form

b̂ =

(
1 if

PN
i=1(Xi � �)(Ri � �) � 0

�1 if
PN

i=1(Xi � �)(Ri � �) < 0:

Therefore a theoretical bit error rate of the case b = 1 is sent is

Pr(
PN

i=1(Xi � �)(Ri � �) < 0
�� b = 1);

and one of the case b = �1 is sent is

Pr(
PN

i=1(Xi � �)(Ri � �) � 0
�� b = �1):

It can be seen easily that the two probabilities are of the same, so we will consider
only the case of b = 1 throughout this paper. In Lawrance and Ohama [6] it has
been proved that

BER = E[�(�
qPN

i=1(Xi � �)2=�)];
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where �(x) is the distribution function of a standard Gaussian random variable and
expectation is taken over the spreading sequence. By the de�nition of the chaotic
spreading sequence the expectation can be reduced to one argument expectation as

E[�(�
qPN

i=1(�
i�1(X1)� �)

2
=�)]:

A signal to noise ratio is usually standardized by multiplying the spreading factor
N, that is, N�2

X
=�2. It is called the per bitsignal to noise ratio (pbSNR). The reason

for the standardization is to compensate for di�erent spreading factors N and the
use of the transmission channel. With this notation we have

BER = E[�(�
p
pbSNR

q
N�1

PN
i=1(�

i�1(X1)� �)2=�
X

2)]

= 1�E[�(
p
pbSNR

q
N�1

PN
i=1(�

i�1(X1)� �)2=�
X

2)]:

As we have mentioned it takes enormous time to calculate the above expectation
numerically when N is large, e�cient approximation is thus of interest.

3. Taylor approximations of bit error rates.

Put � =
p
pbSNR and SN (x) = N�1

PN
i=1

�
� i�1(x)� �

�2�
�2
X

for simplicity

and � is assumed to be a constant. We begin with approximating �(�
p
SN (X1))

by using Taylor expansion. By the low of large number it might be assumed that
SN (X1) is close to 1 when N is large and so Taylor approximation of �(�

p
SN (X1))

at � might be a good approximation. Since �(x) is C1-class,

�(�
p
SN (x)) =

KX
k=0

1

k!
�(k)(�)f�(

p
SN (x) � 1)gk

+
f�(pSN (x) � 1)gK+1

(K + 1)!
�(K+1)(� + ��(

p
SN (x) � 1)); (1)

for some � = �(x;K) in (0; 1), any x in [c; d], and any K in N. De�ne RK+1(x) =
RK+1;N (x) as the second term of the right-hand side of (1), we have

E
�
�(�

p
SN (X1))

�
=

Z d

c

�(�
p
SN (x))f(x)dx

=

Z d

c

�PK
k=0

1
k!�

(k)(�)
�
�(
p
SN (x) � 1)

	k
+RK+1(x)

�
f(x)dx

=
KX
k=0

�k

k!
�(k)(�)

R d
c
(
p
SN (x)� 1)kf(x)dx +

R d
c
RK+1(x)f(x)dx

=
KX
k=0

�k

k!
�(k)(�)E

�
(
p
SN (X1)� 1)k

�
+
R d
c
RK+1(x)f(x)dx: (2)

Our purpose is approximating E[�(�
p
SN (X1))] by the �rst term of the right-hand

side of (2), so the absolute value of the second term is of interest, especially in terms
of K and N. De�ne �(x) as the density function of a standard Gaussian random
variable then we have

RK+1(x) =

�
�(
p
SN (x) � 1)

	K+1

(K + 1)!
�(K)

�
� + ��(

p
SN(x) � 1)

�
: (3)
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Note that if
���R dc RK+1(x)f(x)dx

��� converges to 0 as K ! 1 or N ! 1, the sum-

mation in (2) converges to E[�(�
p
SN (X1))]. Put y = x=

p
2 and de�ne HK(y) as

Kth order Hermite polynomial then we have, for any x in [c; d],

�(K)(x) =
dK

dxK
1p
2�

e�
x2

2 =
1p
2�

�
dy

dx

�K
dK

dyK
e�y

2

=
1p
2�

�
1p
2

�K

HK(y)(�1)Ke�y
2

=
1p
2�

�
� 1p

2

�K

~hK(y)e
�y2

2

=
1p
2�

�
� 1p

2

�K

~hK(
xp
2
)e�

x2

4 = (�1)Ke�x2

4

s
K!

2
p
�

~hK(
xp
2
)p

2KK!
p
�

= (�1)Ke�x2

4

q
K!=2

p
� hK(

xp
2
); (4)

where ~hK(y) = HK(y)e
�y2

2 and hK(y) = ~hK(y)
�p

2KK!
p
�. By Lemma 1.5.1 in

Thangvelu [12] ����(K)(x)
��� = e�

x2

4

q
K!=2

p
�

����hK( xp
2
)

���� � C
p
K!; (5)

where C is some constant. So we have���R dc RK+1(x)f(x)dx
��� � C�K+1

p
K!
R d
c j
p
SN (x)� 1jK+1f(x)dx

�
(K + 1)!: (6)

Since c � �(x) � d;

SN (x) = N�1
NX
i=1

�
� i�1(x) � �

�2�
�
X

2

= N�1
NX
i=1

�
� i�1(x) � c+ d

2

�2�
�
X

2 �
�
d� c

2�
X

�2

; (7)

for any N and there thus exists the maximum M of
��pSN (x)� 1

��. So we have���R dc RK+1(x)f(x)dx
��� � C�K+1

p
K!
R d
c
MK+1f(x)dx

�
(K + 1)!

� C�K+1MK+1
p
K!

�
(K + 1)!

=
Cp
K + 1

s
(�M)2

K + 1

(�M)2

K
� � � (�M)2

2

(�M)2

1

K!1����! 0; (8)

for any N. On the other hand, when K is �xed it can be proved thatZ d

c

j
p
SN (x)� 1jK+1f(x)dx! 0 as N !1; (9)

by Chebyshev inequality with the assumption that the variance of SN (X1) converges
as N increases. This assumption is not too strict when the sequence is chaotic.

Therefore jR dc RK+1(x)f(x)dxj converges to 0 as K or N increases and so we can
approximate a bit error rate by Kth order Taylor approximation, Approx (K) say,

Approx (K) = Approx (K;N; �; �) = 1�
KX
k=0

�k

k!
�(k)(�)E[(

p
SN (X1)� 1)k]: (10)

with large K or N. Note that when K = 0 the approximation is lower bound
1 � �(

p
pbSNR) in Lawrance and Ohama [6]. It should also be noted that large

pbSNR, that is, large �2 makes the right-hand side of (6) large and thus the rate of
4



convergence might be slower than when pbSNR is small. ExceptK = 0, the approx-

imations do not hold (C3) in Section 1 because of the term E[(
p
SN (X1)� 1)

k
].

The required time for this numerical integration is not essentially di�erent from
the one for an exact bit error rate. However we will compare these approximations
with rather small N in order to understand what is happening in the approximating.
Chaotic maps employed are

(a) Tent map;

�(x) =

(
2x (0 � x < 1=2)

2(1� x) (1=2 � x � 1):

(b) 3 branch shift map;

�(x) =

8><
>:
3x (0 � x < 1=3)

3x� 1=3 (1=3 � x < 2=3)

3x� 2=3 (2=3 � x � 1):

(c) (3,1)-tailed shift map;

�(x) =

8><
>:
2x+ 1=3 (0 � x < 1=3)

2x� 1=3 (1=3 � x < 2=3)

x� 2=3 (2=3 � x � 1):

(d) Skewed tent map;

�(x) =

(
4x=3 (0 � x < 3=4)

4(1� x) (3=4 � x � 1):

(e) Order 2 Chebyshev map (usual Chebyshev map);

�(x) = cos(2 arccos(x)) = 2x2 � 1 (�1 � x � 1):

(f) Order 3 Chebyshev map (cubic map);

�(x) = cos(3 arccos(x)) = 4x3 � 3x (�1 � x � 1):

(g) A nonlinear map;

�(x) =

8><
>:
� 1

2x+
p
3
2

p
1� x2 (�1 � x � �1=2)

x2 � 1
2 + x

p
3(1� x2) (�1=2 < x � 1=2)

x2 � 1
2 � x

p
3(1� x2) (1=2 < x � 1)

(h) A nonlinear map;

�(x) =

(
cos(4 arccos(x)) (�1 � x < �p2=2)
cos(4 arccos(x)=3) (�p2=2 � x � 1):

It is well known that maps (a) to (d) are piecewise linear maps on [0; 1] with
uniform invariant distribution and maps (e) and (f) are nonlinear maps on [�1; 1]
with �( 12 ;

1
2 ) invariant distribution. It will be seen in Appendix B that maps (g) and

(h) are piecewise nonlinear maps on [�1; 1] with the same invariant distribution as
maps (e) and (f). See Geisel and Fairen [2] and Appendix B for further information
of these maps. Figure 1 and the following similar �gures are plots of exact bit error
rates against theirs approximations with spreading maps (a) to (h) and several
spreading factors. The spreading factor N employed are 2, 5 and 10, per bit signal
to noise ratio pbSNR employed are �5, 0, 5, 10, 15 and 20 (measured in decibel).
Bit error rates with per bit signal to noise ratio pbSNR= �5 (star), pbSNR= 0
(triangle) and pbSNR= 5 (cross) are plotted against approximations Approx(2),
Approx(3) and Approx(4) in Figure 1, Figure 2 and Figure 3 respectively. Note that
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there is no distinctive mark for di�erent spreading maps and spreading factors. A
line in each �gure shows y = x for comparison. The more points on this line, the
better the approximation. These �gures show that every approximation seems to
be su�ciently good when pbSNR is less than 5.

0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

B
E
R

Approx(2)

Figure 1. Bit error rates BER are plotted against approximations Approx(2)

with per bit signal to noise ratios pbSNR= �5 (star), pbSNR= 0 (triangle)

and pbSNR= 5 (cross).
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Approx(3)

Figure 2. Bit error rates BER are plotted against approximations Approx(3)

with per bit signal to noise ratios pbSNR= �5 (star), pbSNR= 0 (triangle)

and pbSNR= 5 (cross).
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0.05

0.1

0.15

0.2
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0.3
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Approx(4)

Figure 3. Bit error rates BER are plotted against approximations Approx(4)

with per bit signal to noise ratios pbSNR= �5 (star), pbSNR= 0 (triangle)

and pbSNR= 5 (cross).

In Figure 4, exact bit error rates are plotted against approximation Approx (k)
with k = 2 (stars), k = 3 (triangles) and k = 4 (crosses). The common per bit
signal to noise ratio 10 is employed here. This �gure shows that when pbSNR is 10,
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Approx(2) and Approx(3) are not as good as the case pbSNR is less than 5 while
Approx(4) is. It might be due to the fact that a large pbSNR makes the rate of
convergence slow as we have mentioned, so either an order of Taylor expansion or
the spreading factor might not be large enough in these cases. However there seems
to be a positive correlation between each order approximations Approx(k) and bit
error rates. Figure 5 is the same scatter plot as Figure 4 but plotted only against
Approx(4) and indicated di�erent spreading factors by di�erent shapes as triangles
(N = 2), stars (N = 5) and crosses (N = 10). This �gure suggests that even wiht
4th order approximation, spreading factor 2 is not large enough when pbSNR = 10.
Figure 6 and Figure 7 are plots of bit error rates against Approx (4) with per bit
signal to noise ratio pbSNR = 15 and pbSNR = 20 respectively. These �gures show
that even Approx(4) with spreading factor N = 10 is not a good approximation
when pbSNR is greater than 15. It might be suggested that either higher order
Taylor approximation or larger spreading factor are required to approximate a bit
error rate with large pbSNR e�ciently.

0.005 0.015 0.025

0.005

0.015

0.025

0.035

B
E
R

Approx(k)

Figure 4. Bit error rates BER are plotted against approximation Approx (k)

with k = 2 (star), k = 3 (triangle) and k = 4 (cross). The common per bit

signal to noise ratio pbSNR = 10 is employed.

0.005 0.015 0.025

0.005

0.015

0.025

0.035

B
E
R

Approx(4)

Figure 5. Bit error rates BER are plotted against approximation Approx (4)

with spreading factor N = 2 (triangle), N = 5 (star) and N = 10 (cross). The

common per bit signal to noise ratio pbSNR = 10 is employed.
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Approx(4)

Figure 6. Bit error rates BER are plotted against approximations Approx(4)

with a per bit signal to noise ratio pbSNR = 15.

5�10-19 1�10-181.5�10-182�10-18

0.0002

0.0006

0.001

B
E
R

Approx(4)

Figure 7. Bit error rates BER are plotted against approximations Approx(4)

with a per bit signal to noise ratio pbSNR = 20.

4. Modi�cation of Taylor approximation

As we have mentioned in the previous section, Taylor approximation Approx(k)
does not hold (C3) in Section 1. We thus need to modify it so that a new approxi-
mation requires less time to be calculated. The cause of the long calculating time
of Approx(k) is the terms E[(

p
SN (X1) � 1)k], more explicitly E[

p
SN (X1)] and

E[
p
SN (X1)

3
] when k = 4. We again use Taylor approximation of these terms.

Put SN = SN (X1) then we have

E[
p
SN ] � 1 +

1

2
E[(SN � 1)]� 1

8
E[(SN � 1)2]; (11)

and

E[
p
SN

3
] � 1 +

3

2
E[(SN � 1)] +

3

8
E[(SN � 1)2]; (12)

when SN is close to 1, that is, N is large. Note that E[(SN � 1)] = 0 so we have

E[
p
SN � 1] � �1

8
E[(SN � 1)2];

E[(
p
SN � 1)2] = 2(1�E[

p
SN ]) � 1

4
E[(SN � 1)2];

E[(
p
SN � 1)3] = E[

p
SN

3
]� 1 + 3(E[

p
SN ]� 1)

� 3

8
E[(SN � 1)2]� 3

8
E[(SN � 1)2] = 0; (13)
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and

E[(
p
SN � 1)4] = E[S2

N ]� 4E[
p
SN

3
] + 6E[SN ]� 4E[

p
SN ] + 1

= E[(SN � 1)2]� 4(E[
p
SN

3
]� 1) + 4(1�E[

p
SN ])

� (1� 12

8
+

4

8
)E[(SN � 1)2] = 0: (14)

Therefore we have

Approx (4) (� Approx (3) � Approx (2))

� 1��(�)� ��0(�)(�1

8
E[(SN � 1)2])� �2

2
�00(�)(

1

4
E[(SN � 1)2])

= 1��(�) + �(1 + �2)e�
�
2E[(SN � 1)2]

�
(8
p
2�): (15)

Note that if we put g(SN ) = �(�
p
SN ) and approximate it by second order Taylor

approximation of g(x) at x = 1, we have the same approximation as the above and
this approximation is thus essentially second order. It might be because we ap-

proximate the terms E[
p
SN ] and E[

p
SN

3
] up to second order. If we approximate

them up to third order we will have an approximation

1��(�)� 1

2
g00(1)E[(SN � 1)2]� 1

6
g000(1)E[(SN � 1)3]: (16)

Therefore a new approximation might be

NewAp(K)
def
= 1�

KX
k=0

g(k)(1)E[(SN � 1)
k
]
�
k!: (17)

It should be noted that the required time to calculate E[(SN � 1)k] might possibly

be less than the one for E[(
p
SN � 1)

k
] because Perron-Frobenius theorem can be

applied, though it might not be so easy to calculate when k is greater than 2. Only
NewAp(2) has been calculated for the same maps and the same pbSNR given in the
previous section. In Figure 8, exact bit error rates are plotted against theirs new
approximations NewAp(2) with per bit signal to noise ratio pbSNR = �5 (stars),
pbSNR = 0 (triangles) and pbSNR = 5 (crosses). There is no distinctive mark for
di�erent maps and spreading factors. Points are not quite on the y = x line when
pbSNR = 5 while they are so in Figure 1, Figure 2 and Figure 3.
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Figure 8. Bit error rates BER are plotted against new approximations

NewAp(2) with per bit singal to noise ratios pbSNR = �5 (star), pbSNR = 0

(triangle) and pbSNR = 5 (cross).

Figure 9 is the same scatter plot as Figure 8 but with a per bit singal to noise
ratio pbSNR = 10. This �gure suggests that higher order approximations will be
required for large pbSNR like the previous approximation Approx(k). However, it
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seems that there is a positive correlation between NewAP(2) and exact bit error
rates.

0.002 0.004 0.006 0.008 0.01

0.005

0.015

0.025

0.035

B
E
R

NewAp(2)

Figure 9. Bit error rates BER are plotted against new approximations

NewAp(2) with a per bit singal to noise ratio pbSNR = 10.

5. Discussion

It should be noted that NewAp(2) is a linear function of E[(SN � 1)
2
] when

pbSNR = �2 is �xed, therefore a chaotic map with small E[(SN � 1)2] might lead
a low bit error rate. De�ne �

(X��)2
2 and �

(X��)2
(t) as variance and autocorrela-

tion function of (Xi � �)2 (mean-centered quadratic variance and autocorrelation
function of Xi) respectively. Since

E[(SN � 1)2] = N�1
�
(X��)2

2

�
X
4

n
1 + 2

PN�1
t=1 (1� t

N )�
(X��)2

(t)
o
;

negative mean-centered quadratic autocorrelations might decrease a bit error rate
to some extent as Lawrance and Balakrishna [5] has suggested, at least when pbSNR
is rather small. (This suggestion has been brought about by the approximation of
a bit error rate based on the central limit theorem.) However the negativity is
not enough to asses bit error rates' behaviour because NewAp(2) is not a good
approximation with large pbSNR. Furthermore, since any higher order dependency
is not taken into account, it is impossible to distinguish di�erent order Chebyshev

maps by E[(SN � 1)
2
], that is the same value among Chebyshev maps. Therefore

it might be required to investigate higher order moments of SN � 1 which will
provide higher order approximations, and this investigation might lead us to the
investigation of distribution of SN , which is deeply concerned in outage probability.
Outage probability is another idea of e�ciency in communication systems. The
further investigation of the relation between a bit error rate and outage probability
will be reported by the same authors.

References

[1] A. Abel, W. Schwarz and M. G�otz, \Noise performance of chaotic communication systems,"

IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 47,12,
1726-1732, 2000.

[2] T. Geisel and V. Fairen, \Statistical properties of chaos in Chebyshev maps" Phisics Letters,
105A, 6, 263-266, 1984.

[3] M.P. Kennedy, R. Rovati and G. Setti (eds), Chaotic Electronics in Telecommunications.
CRC Press, London, 2000.

[4] G. Koloumban, \Theoretical noise performance of correlator-based chaotic communications
systems," IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applica-

tions, 47,12, 1692-1701, 2000.

10



[5] A.J. Lawrance and N. Balakrishna, \Statistical aspects of chaotic maps with negative depen-
dency in a communications setting," Journal of the Royal Statistical Society, Series B, 63,
843-853, 2001.

[6] A.J. Lawrance and G. Ohama, \Exact calculation of bit error rates in chaos communication
modelling," submitted to IEEE Transactions on Circuits and Systems-I: Fundamental Theory

and Applications, 2002.
[7] J.M. Lipton and K.P. Dabke, \Spread spectrum communications based on chaotic systems,"

International Journal of Bifurcation and Chaos, 12A, 2361-2374, 1996.
[8] V. Milanovic, K.M. Syed and M. Zaghloul, \Combationg noise and other channel distortions

in chaotic communications," International Journal of Bifurcation and Chaos, 7, 215-225,
1997.

[9] T. Schimming and M. Hasler, \Optimal detection of di�erential chaos-shift keying," IEEE

Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 47, 1712-
1719, 2000.

[10] M. Sushchik, L.S. Tsimring and A.R. Volkovskii, \Performance analysis of correlation-based
communication schemes utilizing chaos," IEEE Transactions on Circuits and Systems-I: Fun-

damental Theory and Applications, 47, 1684-1691, 2000.
[11] W.M. Tam, F.C.M. Lau, C.K. Tse and M.M. Yip, \An approach to calculating the bit-error

rate of a coherent choas-shift-keying digital communication system under a noisy multiuser
enviroment," IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Ap-

plications, 49, 210-223, 2002.
[12] S. Thangavelu, Lectures on Hermite and Laguerre Expansions. Princeton University Press,

Princeton, 1993.

APENDIX A.
Mean-centered quadratic autocorrelation function

of (3,1)-tailed shift map

As we have already seen, a mean-centered quadratic autocorrelation function
might play a important role in the assessment of chaotic maps. This function can
be obtained by using Perron-Frobenius operator repeatedly, but this repetition tend
to be in a mess when a chaotic map is not simple, like (3,1)-tailed shift map. In
this appendix, the theoretical mean-centered autocorrelation function of (3,1)-tailed
shift map will be given in recursive formulae. (3,1)-tailed shift map (Figure A1) is
de�ned as follows.

�(x) =

8><
>:
2x+ 1=3 (0 � x < 1=3)

2x� 1=3 (1=3 � x < 2=3)

x� 2=3 (2=3 � x � 1):

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure A1. (3,1)-tailed shift map.
Put

an = E[I[0;1=3](Xt)f(Xt � �)2 � �
X

2gf(Xt+n � �)2 � �
X

2g];
An = E[I[1=3;1](Xt)f(Xt � �)2 � �

X

2gf(Xt+n � �)2 � �
X

2g];
bn = E[I[0;1=3](Xt)(Xt � �)f(Xt+n � �)2 � �

X

2g];
Bn = E[I[1=3;1](Xt)(Xt � �)f(Xt+n � �)2 � �

X

2g];
cn = E[I[0;1=3](Xt)f(Xt+n � �)2 � �

X

2g];
Cn = E[I[1=3;1](Xt)f(Xt+n � �)2 � �

X

2g];

where I[�;�](x) is an indicator function on an interval [�; �], Xt+n = �(Xt+n�1) =

�n(Xt), � = 1=2 and �
X

2 = 1=12. Note that an+An = Cov [(Xt � �)
2
; (Xt+n � �)

2
]
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and cn + Cn = 0. From the de�nition of an we have

an =
R 1=3

0 f(x� 1
2 )

2 � 1
12gf(�n(x) � 1

2 )
2 � 1

12gdx
=
R 1=3

0 f(x� 1
2 )

2 � 1
12gf(�n�1(�(x)) � 1

2 )
2 � 1

12gdx
=
R 1=3

0 f(x� 1
2 )

2 � 1
12gf(�n�1(2x+ 1

3 )� 1
2 )

2 � 1
12gdx;

put y = 2x+ 1
3 then

=
1

2

R 1

1=3f( 12 (y � 1
3 )� 1

2 )
2 � 1

12gf(�n�1(y)� 1
2 )

2 � 1
12gdy

=
1

8

R 1

1=3f(y � 1
2 )

2 � 1
12gf(�n�1(y)� 1

2 )
2 � 1

12gdy

+
5

24

R 1

1=3
(y � 1

2 )f(�n�1(y)� 1
2 )

2 � 1
12gdy

+
1

18

R 1

1=3
f(�n�1(y)� 1

2 )
2 � 1

12gdy

=
1

8
An�1 � 5

24
Bn�1 +

1

18
Cn�1:

By the similar calculation, we have the following recursive formulae.

an =
1

8
An�1 � 5

24
Bn�1 +

1

18
Cn�1;

bn =
1

4
Bn�1 � 5

24
Cn�1;

cn =
1

2
Cn�1;

An =
1

8
An�1 � 1

24
Bn�1 � 1

36
Cn�1 + an�1 +

4

3
bn�1 +

4

9
cn�1;

Bn =
1

4
Bn�1 � 1

24
Cn�1 + bn�1 +

2

3
cn�1;

Cn =
1

2
Cn�1 + cn�1:

From these formulae and initial values a0; b0; c0; A0; B0; and C0, which can be cal-
culated easily, any mean-centered quadratic autocorrelation �(h) can be calculated
as �(h) = (ah +Ah)=(a0 + A0). For example, exact �(h) for h = 0; 1; : : : ; 10 are

f1;�1

3
;
17

324
;
7

96
;� 475

20736
;
8717

165888
;� 11723

1327104
;

224413

10616832
;� 110011

84934656
;
5095213

679477248
;

2269525

5435817984
g:

It is not necessary to explain these formulae explicitly, but we can describe some
of formulae as follows.

Bn = 8�n(170

[n=2]X
t=0

�
n
2t

�
17t � 374

[(n+1)=2]X
t=0

�
n

2t� 1

�
17t � 119(�4)n)=32848;

bn =
1

4
Bn�1 � 5

972
(�2)�n;

Cn = � 1

81
(�2)�n;

cn =
1

81
(�2)�n;

where [r] denotes the greatest integer less than r. However, it seems impossible
to explain An and an explicitly. It should be noted that recursive formulae for an
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autocorrelation function of any (n; k)-tailed shift (also antishift, mixed shift) map
can be obtained similarly by dividing interval [0; 1] into [0; kn ] and [ kn ; 1].

APENDIX B
Nonlinear chaotic maps with �( 12 ;

1
2 ) invariant distribution

It is well known that tent map on a interval [0; 1] and order 2 Chebyshev map are
homeomorphic and the function arccos(x)=� is the one of homeomorphism, that is,
when we de�ne �1(x) and �2(x) as tent map and order 2 Chebyshev map respectively
and put F (x) = arccos(x)=�, the equation �2(x) = F�1 � �1 � F (x) holds for any
x 2 [�1; 1] (see Geisel and Fairen [2]). The invariant density function of Chebyshev
map is �( 12 ;

1
2 ) on [�1; 1] and its distribution function is F (x). This fact can be

shown easily as follows. Put Xt = �1(Xt�1) and Yt = F�1(Xt) then we have

Yt = F�1(Xt) = F�1 � �1(Xt�1) = �2 � F�1(Xt�1) = �2(Yt�1);

and thus the invariant distribution function of �2 is,

Pr(�2(Yt�1) � y) = Pr(Yt � y) = Pr(F�1(Xt) � y) = Pr(Xt � F (y)) = F (y)

since the invariant distribution of �1 is uniform on [0; 1]. Furthermore, the invariant
distribution of �2 does not change even if we replace �1 with another chaotic map
as long as its invariant distribution is uniform on [0; 1]. Therefore we can think of
a set of nonlinear chaotic maps whose invariant density function is �( 12 ;

1
2 ), a set of

generalized Chebyshev maps, say, by replacing �1 with various piecewise linear map
on [0; 1] with uniform invariant distribution like skewed tent map or (n; k)-tailed
shift map. In this appendix, we will provide several nonlinear chaotic map with
�( 12 ;

1
2 ) invariant distribution that we used in the main part of this paper.

Skewed Chebyshev map. Skewed tent map with a peak at � (Figure B1) is
given as follows.

�(x) =

(
x
� (0 � x < �)
1�x
1�� (� � x � 1):

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure B1.

Skewed tent map with a peak at 3/4.

It is usual tent map when � = 1
2 . The nonlinear chaotic map induced by this map

is as follows.

�2(x) = F�1 � �1 � F (x) = F�1 � �1(arccos(x)=�):
Put x0 = cos(��): When �1 � x < x0, that is, � < arccos(x)=� � 1,

�2(x) = F�1((1� arccos(x)

�
)=(1� �)) = cos(

� � arccos(x)

1� �
)

= cos(
�

1� �
) cos(

arccos(x)

1� �
) + sin(

�

1� �
) sin(

arccos(x)

1� �
):

When x0 � x � 1, that is, �1 � arccos(x)=� � �,

�2(x) = F�1(arccos(x)=��) = cos(arccos(x)=�):

Figure B2 shows its graph and this is the map we refered as (h) in Section 2.
13
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Figure B2. Skewed Chebyshev map induced by skewed tent map with a peak

at 3/4. (x0 = �1
�p

2)

(n,k)-tailed shift (antishift, mixed shift) Chebyshev map. We will see only
one example here, (3; 1)-tailed shift Chebyshev map, but we can produce other
maps similarly. The de�nition of (3,1)-tailed shift map and its graph is given in the
previous appendix. First of all, we need to know all undi�erentiable points of an
induced map, so we have to solve equations arccos(x)=� = k=n for k = 1; : : : ; n�1,
in our case, arccos(x)=� = 1=3 and arccos(x)=� = 2=3. The solutions are x0 = 1=2
and x1 = �1=2 respectively. Therefore,

�2(x) = F�1 � �1(arccos(x)=�)
= F�1(2 arccos(x)=� + 1=3) = cos(2 arccos(x) + �=3)

= cos(�=3) cos(2 arccos(x))� sin(�=3) sin(2 arccos(x))

=
1

2
(2cos(arccos(x))

2 � 1)�
p
3

2
2 sin(arccos(x)) cos(arccos(x))

= x2 � 1

2
� x

p
3(1� x2)

for x 2 (1=2; 1],

�2(x) = F�1 � �1(arccos(x)=�)
= F�1(2 arccos(x)=� � 1=3) = cos(2 arccos(x) � �=3)

= cos(�=3) cos(2 arccos(x)) + sin(�=3) sin(2 arccos(x))

=
1

2
(2cos(arccos(x))

2 � 1) +

p
3

2
2 sin(arccos(x)) cos(arccos(x))

= x2 � 1

2
+ x

p
3(1� x2)

for x 2 (�1=2; 1=2],

�2(x) = F�1 � �1(arccos(x)=�)
= F�1(arccos(x)=� � 2=3) = cos(arccos(x)� 2�=3)

= cos(2�=3) cos(arccos(x)) + sin(2�=3) sin(arccos(x))

= �1

2
x+

p
3

2

p
1� x2

for x 2 [�1;�1=2]. Since arccos(x) is decreasing function on [�1; 1], the induced
map is left-continuous, not right-continuous. Figure B3 gives its graph and this is
the map we refered as (g) in Section 2.
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Figure B3. (3; 1)-tailed shift Chebyshev map
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