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Abstract. A bit error rate is an important aspect in communication mod-

eling and used to assess the performance. However, bit error rates that have
been reported in earlier work were either based on Gaussian-based approxi-
mation or computational simulation and led inaccurate results. In order to
assess the performance of communication systems, modulating methods and
chaotic maps that is used to produce a spreading sequence, exact bit error
rates are highly required. The paper investigates the calculation of an ex-
act bit error rate for single-user chaos shift-keying (CSK) systems, and gives
several comparisons that can not be obtained by the approach of Gaussian
based approximation or computational simulation either. The use of an opti-
mal decoder is also mentioned and a comparison of the optimal decoder and
the so-called correlation decoder is given from the viewpoint of exact bit error
rates.

1. Introduction

Because of explosive growth in personal communications, especially between mo-
bile communications terminals, there is a need to provide e�ective communication
systems in which many users are allowed to access simultaneously without inter-
ference and communications are secure. For security, each user's stream of signals
(messages) should look like noise to the others and these streams should be inde-
pendent each other to avoid interference. In conventional communication systems,
trigonometric wave functions are used to disguise digital information as a \noise-
like" sequence and many modulation schemes have been proposed. However, be-
cause of the periodicity of trigonometric wave functions the risk of interference in
multiple user systems is not low. Chaos communication systems are supposed to
be the alternative in which chaotic sequences are used instead of trigonometric
wave functions and a wide variety of chaos communication systems have already
been proposed, mainly as adaptions of conventional systems. Kennedy, Rovatti and
Setti [4] is the �rst monograph in the area.

In any communication system, an estimate of bit (digital information) based
on a received \noise-like" sequence at a receiver side is required and there is no
error-free system due to the channel noise. The channel is the physical medium
through which a \noise-like" sequence passes as it travels from a sender to a receiver
and is corrupted by noise, usually assumed to be additive white Gaussian noise
(AWGN). Therefore the probability of an estimation error, bit error rate (BER),
is of interest. Even though it seems clear that an estimation method (decoder)
that gives a low bit error rate is preferable, a correlation decoder has been widely
used with little consideration about its exact bit error rate. It is a purpose of this
paper to reconsider a correlation decoder from the viewpoint of maximum likelihood
estimation as suggested in Schimming and Hasler [10], and to revisit the calculation
of bit error rates from �rst statistical and dynamical principles to obtain exact bit
error rates; as exempli�cation of the approach, the simplest of single-user chaos shift
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keying models is studied. The approach makes use of the implicit distributional
behaviour of chaotic processes and the widely employed assumption of AWGN
in the channel. The existing literature on the calculation of bit error rates for
particular chaos-based models induces some concern where un-justi�able statistical
manipulations and Gaussian assumptions may have been made. These can lead to
inaccurate results relative to exact calculation; Lawrance and Balakrishna [6] give a
simple chaos shift keying illustration where only a Gaussian assumption is at fault.
Examples of earlier work which might be extended by exact calculations include
Abel et al [1], Kolumban [5], Lipton and Dabke [8], Milanovic et al [9], Sushchik
et al [11], and Tam et al [12]. A further advantage of seeking exact results is
that they enable detailed and accurate comparison of bit error rates using di�erent
chaotic map generators, with identical moments for instance, and may be lead to
identi�cation of some optimal of generators.

From the viewpoint of maximum likelihood estimation, a correlation decoder is
not always optimal. On the other hand, a likelihood optimal decoder is generally
not as tractable as the correlation decoder. It is thus investigated whether the
optimal decoder should be used considering its intractability.

2. Chaos Shift-keying Systems and a Likelihood Optimal Decoder

Communication systems involving the generation of chaotic sequence will be
introduced by mathematically specifying and discussing simple versions of the so-
called chaos shift-keying (CSK) systems. In these systems messages to be sent
are in binary bit form, here with a bit being denoted by b = �1. Theoretically,
attention is focused on the transmission of a single bit. A digital bit b is sent to
a receiver by being embedded in an N length spreading sequence fXig which is
generated by a chaotic map �(z), c � z � d. The length N is called the spreading

factor. The sequence is assumed to have been started with a random value from
an invariant distribution of the map, thus the each element of the sequence has the
common mean � and the common variance �

X

2. The embedded signal is of the
form �+b(Xi��) and thus the bit is signi�ed by either leaving the chaotic sequence
unchanged as Xi (b = 1), or reecting it about its mean � as 2� �Xi, a form of
chaotic modulation. To avoid the reected values being out of range, the invariant
distribution is assumed to be symmetric and so � = (d�c)=2. Modulated signals go
through the transmission channel and are corrupted by AWGN, f"ig, with variance
�2: Thus the received signal is of the form Ri = �+b(Xi��)+"i. In coherent CSK
systems, a receiver is assumed to have all information about a spreading sequence
fXig. On the other hand, a receiver is allowed to have only corrupted information
about fXig in non-coherent CSK systems. We will explore the optimal decoder
based on the standard statistical method of maximum likelihood estimation �rst in
coherent CSK systems, then in non-coherent CSK systems. Each bit is assumed to
be independent of previous bits.

2.1. An optimal decoder in coherent CSK systems.

In coherent CSK systems, a receiver has the data frig and fxig as the sample of
fRig and fXig respectively to estimate digital information b. The proper approach
is through maximum likelihood, taking b = �1 according to which value gives the
highest likelihood of (bjr; x) where r = (r1; r2; : : : ; rN )

0 and x = (x1; x2; : : : ; xN )
0.

This is the approach set out by Schimming and Hasler [10] to be applied here.
Since the conditional distribution of R given X is independent Gaussian and " =
("1; "2; : : : ; "N )

0 and X are independent, the joint likelihood of b based on (r; x) is

f
R;X

(r; xjb) = f
X
(x)f"(r � �� b(x� �)); (1)
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where f
X
(�) and f"(�) are the marginal densities of X and " respectively. Thus, the

likelihood of b based on (r; x) is

`(bjr; x) = f
X
(x)(

p
2��)�N exp(� 1

2�2

NX
i=1

(ri � �� b(xi � �))2):

The bit b is estimated by b̂ = +1 if `(+1jr; x)=`(�1jr; x) � 1 and by b̂ = �1 if the
ratio is less than one. This inequality is seen to be equivalent to

C(r; x)
def
=

NX
i=1

(xi � �)(ri � �) � 0: (2)

C(r; x) is the so-called correlation decoder even though it involves covariance, not
correlation, between the chaotic segment and the received bit segment. Neverthe-
less, the widely used correlation decoder is optimal in coherent CSK systems. It
is of interest to calculate the error probability of the estimation, the bit error rate

(BER). The approximation based on the standard Gaussian assumption has been
used as if it is an exact bit error rate for a long time with little consideration, see
Kennedy, Rovatti and Setti [4], pp22-23. However, it will be seen in the next section
that the approximation gives only a lower bound of exact bit error rates. The exact
calculation of bit error rates of the optimal decoder, that is, correlation decoder in
coherent CSK systems will be given in the next section.

2.2. An optimal decoder in non-coherent systems.

In non-coherent systems, a receiver is supposed to have only corrupted informa-
tion about fXig. Suppose the data a receiver can use to estimate b is frig and fyig
where fyig is a sample from random variable

Yi = Xi + �i;

and f�ig is AWGN with the same variance �2 as f"ig. This system can be considered
as di�erential chaos shift-keying (DCSK) in which a received sequence fRig is of
the form,

Ri =

(
�+ b(Xi � �) + "i (i = 1; 2; : : : ; N=2)

Xi�N=2 + "i (i = N=2 + 1; N=2 + 2; : : : ; N);

and this is the only data a receiver can use. The likelihood of b is based on the
joint density of (R; Y jb). First the joint density of (X;Y;R) is required, and by
generalising (1), this is seen to be

f
X;Y;R

(x; y; rjb) = f
X
(x)f�(y � x)f"(r � �� b(x� �))

and with the AWGN assumptions becomes

f
X
(x)(2��2)�N exp(� 1

2�2

NX
i=1

(yi � xi)
2) exp(� 1

2�2

NX
i=1

((ri � �)� b(xi � �))2):

(3)

Marginalizing out the unknown exact spreading values X , the likelihood of b is seen
as

`(bjr; y)

=

Z
(c;d)N

(2��2)�N exp(� 1

2�2

NX
i=1

f(yi � xi)
2 + ((xi � �)� b(ri � �))2g)f

X
(x)dx:

(4)
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The summation term is now simpli�ed so as to isolate the terms in x as much as
possible and uncover a covariance type term for y. It can be written

NX
i=1

�
(yi � �)2

2
+

(ri � �)2

2
� b(ri � �)(yi � �)

+ 2

�
(xi � �)� (yi � �) + b(ri � �)

2

�2
#
:

In order to simplify subsequent expressions, put

t0(y; r) =
1

2

NX
i=1

f(yi � �)2 + (ri � �)2g

and

t(x; y; r; b) =

NX
i=1

�
(xi � �)� (yi � �) + b(ri � �)

2

�2

:

The likelihood in (4) can now be written as

(2��2)�N exp[� 1

2�2
ft0(y; r)� b

PN
i=1(ri � �)(yi � �)g]E[expf� t(X;y;r;b)

�2 g]
which gives the likelihood ratio as

`(+1jy; r)
`(�1jy; r) = exp

�
1

�2
PN

i=1(ri � �)(yi � �)

�
E[expf�t(X; y; r;+1)=�2g]
E[expf�t(X; y; r;�1)=�2g] : (5)

Taking logarithm of the right-hand side of (5), we have

Opt(y; r)
def
=

1

�2

NX
i=1

(ri � �)(yi � �)

+ logE[expf�t(X; y; r;+1)=�2g]� logE[expf�t(X; y; r;�1)=�2g] (6)

The bit b is estimated by b̂ = +1 if Opt(y; r) � 0 and by b̂ = �1 if Opt(y; r) <
0. The �rst term of (6) can be considered as the so-called correlation decoder
using the signal and the spreading sequences, and the two logarithm terms in (6)
can be considered as a modulating factor using the same sequences. Therefore
the correlation decoder is not optimal in non-coherent CSK systems while it is in
coherent CSK systems. Because of the modulating factor, the picture is not totally
as clear as might be hoped, following the wishes of Schimming and Hasler [10];
moreover the modulating factor may be di�cult to calculate repeatedly. It is of
interest to assess \how much better the optimal decoder is than the correlation
decoder." The comparison should be based on exact bit error rates, but the exact
bit error rate of the optimal decoder can not be calculated straightforwardly because
of the complexity of the modulating factor. Thus the exact bit error rate of the
correlation decoder is still of interest though it is not optimal in terms of maximum
likelihood estimates. We will explore the exact bit error rate of the correlation
decoder in non-coherent systems in the next section. A comparison between exact
bit error rates of the correlation decoder and simulated bit error rates of the optimal
decoder will also be given.
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3. Exact Bit Error Rates of the Correlation Decoder

3.1. Bit error rates in coherent CSK systems.

As we have seen in the previous section, the correlation decoder (2) is optimal
in coherent CSK systems and the bit error rate of the case b = 1 is sent is given as
follows:

BER(N) = Pr(C(R;X) < 0jb = 1):

It is easily seen to be the same when b = �1 is sent, although this is not always
the case. From the de�nition of Ri and (2) we have

BER(N) = Pr(
PN

i=1(Xi � �)(Xi � �+ "i) < 0)

= Pr(
PN

i=1"i(Xi � �) < �PN
i=1(Xi � �)2);

and by the double expectation theorem,

= E
X
[Pr(

PN
i=1"i(Xi � �) < �PN

i=1(Xi � �)2jX)]: (7)

The conditional probability in (7) can be written as follows: since fXig and f"ig
are independent,

Pr(
PN

i=1"i(Xi � �) < �PN
i=1(Xi � �)2jX = x)

= Pr(
PN

i=1(xi � �)"i < �PN
i=1(xi � �)2): (8)

Note that the left-hand side in the probability (8) is a linear combination of AWGN
f"ig, so becomes

�(�
qPN

i=1(xi � �)2=�)

where �(�) is the distribution function of a standard Gaussian random variable. We
thus have

BER(N) = E[�(�
qPN

i=1(Xi � �)2=�)]; (9)

where expectation is taken over the spreading sequence fXig as dependent random
variables. When a spreading sequence is chaotic, (9) can be written as

BER(N) = E[�(�
qPN

i=1(�
i�1(X1)� �)2=�)];

since Xi = � i�1(X1). The result (9) holds for any type of spreading sequence
assumed to have stationary probabilistic behaviour, and not necessarily chaotic
ones, but only for Gaussian noise. By Jensen's inequality we have a lower bound
of bit error rates as

BER(N) = E[�(�
qPN

i=1(Xi � �)2=�)] � �(�
p
N�

X
=�): (10)

It can be easily seen that in binary phase shift-keying (BPSK) systems in which a
spreading sequence is independent balanced binary, that is,

Xi =

(
c with probability 1=2

d with probability 1=2;

BER(N) equals the lower bound �(�pN�
X
=�). It should be noted that the lower

bound (10) is the same as the widely used Gaussian approximation erfc(
p
�)=2

where � is a standard error ratio of signal to noise, of spreading to noise in this
case. This approximation has been used as an \analytical" bit error rate, but as
we have seen it is only a lower bound in general. In Figure 1a and in subsequent
similar �gures, BER(N) is plotted in log scale against pbSNR, the `per bit signal
to noise ratio' and measured in decibels as 10 log10(N�2

X
=�2). This de�nition thus

incorporates a compensation for di�erent spreading factors N and the use of the
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transmission channel. Figure 1a shows the bene�cial e�ect of chaotic spreading;
the curves N = 2; 3; 4 and 5 are bunched together much lower than the N = 1 case,
although still a little way above the lower bound, but showing that the bene�ts
of more extensive spreading will not be much greater - a conclusion which could
not reliably be obtained from approximate calculations. Figure 1b shows reducing
accuracy as the invariant distribution progressively departs from balanced binary
in the order �( 12 ;

1
2 ), uniform and Gaussian. It can be conjectured that a chaotic

map having the invariant distribution with smaller kurtosis gives a lower bit error
rate as Lawrance and Balakrishna [6] suggested.
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Left: Figure 1a. Bit error rate BER(N) plotted against per bit signal to noise
ratio pbSNR in the case of coherent chaotic logistic spreading for spreading
factors N = 1 (upper solid), N = 2 (dashed), N = 3 (dot dashed), N = 4
(dotted), N = 5 (dot dot dashed) and lower bound (lower solid).
Right: Figure 1b. Bit error rate BER(N) plotted against per bit signal to
noise ratio pbSNR with spreading factor N = 5 for lower bound balanced
binary spreading (lower solid), logistic map spreading (dashed), shift map
spreading (dot dashed) and independent Gaussian spreading (upper solid).

3.2. Bit error rates in non-coherent CSK system.

Though the correlation decoder is not optimal in non-coherent CSK systems,
it is still meaningful to calculate exact bit error rates of the correlation decoder
in non-coherent CSK systems because of the di�culty calculating the modulating
part in (6). Denoting the �rst term of (6) as C(r; y) then BER(N) is written as

BER(N) = Pr(C(R; Y ) < 0jb = 1)

= Pr(

NX
i=1

(Xi � �+ �i)"i < �
NX
i=1

(Xi � �)2 �
NX
i=1

(Xi � �)�i): (11)

By working in terms of the independent random variables "i + �i and "i � �i,
(11) can be expressed exactly in terms of a non-central F distribution, Johnson et

al [3], Chapter 30, with equal degrees of freedom (N;N) and non-central parame-

ter 2
PN

i=1(Xi � �)2=�2. Denoting such a random variable by F
N;N

(2
PN

i=1(Xi �
�)2=�2), the required expression is

BER(N) = E[Pr(F
N;N

(2
PN

i=1(Xi � �)2=�2) < 1)] (12)

where the expectation is taken over the spreading sequence fXtg which may have
chaotic dependency. Similarly to the coherent case, the result can be written as

BER(N) = E[Pr(F
N;N

(2
PN

i=1(�
i�1(X1)� �)2=�2) < 1)]

when a spreading sequence is chaotic. The exact e�ects of noisy spreading can be
obtained by comparing (12) and (9). The lower bound of (12) can be obtained by
applying Jensen's inequality to the series expansion of the non-central F term and
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yields the computable result,

BER(N) � Pr(F
N;N

(2N
�2
X

�2
) < 1): (13)

Similarly to the coherent case, the lower bound (13) equals the BER(N) of non-
coherent BPSK systems. In Figure 2a there are comparisons of the lower bounds
(13) and (10) of the bit error rates in terms of pbSNR, for several spreading factors
N . There is just one lower bound curve in the coherent case while the lower bound
bit error rate with �xed pbSNR increases as N increases in the non-coherent case.
The comparisons in Figure 2b show the existence of the optimal spreading factor for
a constant pbSNR in non-coherent systems that does not exist in coherent systems.
This might be due to the noise in spreading sequence at a receiver side.
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Left: Figure 2a. Comparison of BER(N) for the coherent and non-coherent
lower bound, plotted against pbSNR. The solid curve applies to all spreading
factors in the coherent case. In the non-coherent case, the lower bound curves
are given for N = 1 (dot dashed), N = 2 (dashed), N = 5 (dotted) and N = 10
(dot dot dashed).
Right: Figure 2b. Bit error rate BER(N) plotted against pbSNR in the case
of non-coherent logistic spreading for spreading factors N = 1 (solid), N = 2
(dot dashed), N = 3 (dashed), N = 4 (dotted) and N = 5 (dot dot dashed).

It should be noted that if a signal to noise ratio, �2
X
=�2, is �xed instead of �xed

per bit signal to noise ratio N�2
X
=�2, increasing N in (13) reduces the bit error

rate lower bound but at slower pace than in the coherent case (10). The increase
in bit error rate lower bound as N increases in non-coherent CSK systems, and
the uniqueness of it for N in coherent CSK systems are due to the `per bit' stan-
dardisation. If we ignore the transmission cost, any accuracy can be achieved by
increasing N .

4. Comparison of Bit Error Rates of the Optimal and Correlation

Decoders in Non-coherent Systems

It has been seen that the correlation decoder is not optimal in non-coherent sys-
tems and the optimal decoder will give a lower bit error rate than the correlation
decoder. On the other hand, the optimal decoder requires much time to calculate,
so it is of interest to know whether the optimal decoder gives a worthwhile improve-
ment relative to cost. To assess this, we should compare exact bit error rates of the
optimal decoder and the correlation decoder. However it seems hardly possible to
calculate the exact bit error rate of the optimal decoder because of the complexity
of the modulating factor. The calculation has been done successfully in only a
few very simple case. Therefore simulated bit error rates of the optimal decoder

([BERopt ) will be used instead, and compared with the exact bit error rates of the
correlation decoder (BERcor ), by means of a standard statistical test. Denoting
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the exact bit error rate of the optimal decoder as BERopt , the null hypothesis

H0 : BERopt = BERcor ;

is tested against the alternative hypothesis

H1 : BERopt < BERcor :

If the null hypothesis is not rejected, even though it should be theoretically, it might
be said that there is no point practically in using the optimal decoder.
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Figure 3. Bit error rates of the correlation decoder (solid) and simulated
bit error rates of the optimal decoder based on 5000 samples (points) plotted
against per bit signal to noise ratio pbSNR (left: �5 � pbSNR � 4, right:
5 � pbSNR � 14,) in the case of non-coherent logistic spreading with spreading
factor N = 5. Dotted line indicates the boundary of a critical region with a
signi�cance level 0.05.
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Left: Figure 4a. The di�erence between exact bit error rates of the optimal
decoder and the correlation decoder plotted against per bit signal to noise ratio
pbSNR in the case of non-coherent balanced binary spreading with spreading
factor N = 2.
Right: Figure 4b. The improvement of the optimal decoder in bit error rates
plotted against per bit signal to noise ratio pbSNR in the case of non-coherent
balanced binary spreading with spreading factor N = 2. The improvement is
measured as (BERcor �BERopt)=BERcor .

Figure 3 shows that the null hypothesis can not be rejected at a small per bit signal
to noise ratio while it is at a large per bit signal to noise ratio. It thus might be
suggested that the optimal decoder does give a lower bit error rate than the corre-
lation decoder for large pbSNR, and the larger pbSNR, the larger the improvement
in bit error rates. Figure 4a and Figure 4b, in which the di�erence between BERcor

and BERopt , and the improvement of BERopt are plotted respectively, substanti-
ates the above suggestion strongly. Considering the cost of the optimal decoder,
however, it is doubtful if such improvement is large enough to encourage the use of
the optimal decoder in practical situations. In the authors' simulation it took about
250 times more time on average to decode by the optimal decoder than the corre-
lation decoder, and the di�erence seems to increase exponentially as the spreading
factor N increases. It is clear that quick response is one of the most important
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aspects in communication systems, so the use of the optimal decoder might not be
recommended straightforwardly and further investigation from both the points of
view of statistics and engineering will be required.

5. Conclusions and Discussion

It has been seen in the paper that exact bit error rate calculations are sometimes
possible and then preferable to simulations; correlation decoders are not optimal
in non-coherent CSK systems in terms of maximum likelihood estimates of bit
types, but are calculated more easily than optimal decoders and su�ciently useful
in practical situations. However it should be noted that the importance of the
optimal decoder is not weakened because the paper exempli�ed only CSK systems.
It should also be noted that earlier Gaussian central limit theorem assumptions
ignore chaotic dynamics and lead to inexact results which are only lower bounds
on the error probabilities.
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