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Abstract This study assumes homothetic robust Epstein-Zin (HREZ) utility
and analyzes the consumption–investment problem under a quadratic security
market model. In HREZ utility, characterized by relative risk aversion and
relative ambiguity aversion, if the sum of these equals for two different utili-
ties, then they are observationally indistinguishable. We show that under the
worst-case probability, the market price of risk is replaced by the “investor
price of uncertainty.” We introduce the notions of the “worst-case premiums”
and the “long-term worst-case premiums” on securities, and derive analytical
expressions of the optimal robust control, investor price of uncertainty, worst-
case premiums, and long-term worst-case premiums. Our numerical analysis
suggests that we can identify the two different HREZ utilities based on the
information related to the long-term worst-case premiums.

Keywords Homothetic robust utility · Stochastic differential utility ·
Consumption-investment problem · Stochastic volatility · Stochastic inflation

1 Introduction

There are two key issues in studying consumption and investment problems.
The first is to incorporate into security market models the stylized facts that
interest rates, the market price of risk, variances and covariances of asset re-
turns, and inflation rate are stochastic and mean-reverting. The second issue
is to assume a utility that takes into account Knightian uncertainty, as recog-
nized during the recent global financial crisis.

This paper is a substantial extension of part of Batbold, Kikuchi, and Kusuda [3].
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Regarding the first issue, Batbold, Kikuchi, and Kusuda [2] examine the
consumption–investment problem for long-term investors with constant rela-
tive risk aversion (CRRA) utility under a quadratic security market (QSM)
model that satisfies the above stylized facts. The class of QSM models, which
is a generalization of the class of affine models (Duffie and Kan [8]), has
been independently developed by Ahn, Dittmar, and Gallant [1] and Leip-
pold and Wu [18].1 Batbold et al. [2] derive an optimal portfolio decomposed
into myopic, intertemporal hedging, and inflation–deflation hedging demands,
and show that all three demands are nonlinear functions of the state vector.
Their numerical analysis presents the nonlinearity and significance of market
timing effects; the nonlinearity is attributed to the stochastic variances and
covariances of asset returns, whereas the significance is attributed to inflation–
deflation hedging demand in addition to myopic demand.

For the second issue, Hansen and Sargent [11] introduce robust utility. In-
vestors with robust utility regard the “base probability” as the most likely
probability; however, they also consider other probabilities because the true
probability is unknown. Given that robust utility lacks homotheticity, Maen-
hout [21] proposes homothetic robust utility. Homothetic robust utility is char-
acterized by the subjective discount rate, relative risk aversion, and relative
ambiguity aversion. Homothetic robust utility has been applied to robust con-
trol studies and asset pricing.2 Homothetic robust utility can be interpreted as
homothetic robust CRRA utility in the sense that it converges to CRRA utility
as ambiguity aversion approaches zero. CRRA utility does not separate relative
risk aversion and elasticity of intertemporal substitution (EIS) ψ. Epstein-Zin
utility generalizes CRRA utility and separates these properties while retaining
homotheticity. Maenhout [21] also introduces homothetic robust Epstein-Zin
(HREZ) utility, and Kikuchi and Kusuda [16] show the properties of HREZ
utility. HREZ utility also has been applied to robust control studies and asset
pricing.3 Let β, γ, θ, and ψ denote the discount rate, relative risk aversion, and
relative ambiguity aversion, and EIS of an investor’s HREZ utility. Kikuchi and
Kusuda [16] show that HREZ utility with (β, γ1, θ1, ψ) is observationally in-
distinguishable from that with (β, γ2, θ2, ψ) if γ1+ θ1 = γ2+ θ2 where θ1 ̸= θ2.
Following Kikuchi and Kusuda [13], we refer to the sum of relative risk aver-
sion and relative ambiguity aversion as “relative uncertainty aversion.” This
implies that we can estimate their relative uncertainty aversion of an investor
with HREZ utility from their observed portfolio, but not their relative risk
and ambiguity aversions.

1 QSM models are employed in studies of empirical analysis (Leippold and Wu [19], Kim
and Singletion [17], and Kikuchi [12]), security pricing (Chen, Filipović, and Poor [7], Bo-
yarchenko and Levendorskii [4], and Filipović, Gourier, and Mancini [9], and Kikuchi and
Kusuda [16]), and optimal consumption–investment (Batbold et al. [2], and Kikuchi and
Kusuda [13] [14] [15]).

2 For example, see Maenhout [21], [22], Liu [20], Branger, Larsen, and Munk [5], Munk
and Rubtsov [23], Yi, Viens, Law, and Li [25], and Kikuchi and Kusuda [13].

3 See Maenhout [21], and Kikuchi and Kusuda [15], [16].
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Investors with homothetic robust utility or HREZ utility first determine
the “worst-case probability” of minimizing utility for a given consumption and
investment and then determine the optimal consumption and investment that
maximizes utility under the worst-case probability. The portfolio weights to
risky securities based on homothetic robust utility decrease relative to those
based on non-robust utility. This is because under the worst-case probability,
the market price of risk, which is the price of investing in risky assets, decreases
and the expected returns on assets decrease. Thus, if θ1 > θ2 (resp. γ1 < γ2) in
the two HREZ utilities, the expected returns under the worst-case probability
for the investor with θ1 (resp. γ1) is expected to be lower than that for the
investor with θ2 (resp. γ2). If this is true, we can estimate relative risk aversion
and relative ambiguity aversion through an empirical analysis of the expected
returns on assets under the worst-case probability. Therefore, it is important
to analyze the market price of risk and the expected returns under the worst-
case probability and elucidate the structure of the optimal robust portfolio
determined by such a robust control process. The purpose of this paper is to
analyze and elucidate these issues. We assume an infinite-lived investor who
has HREZ utility with (β, γ, θ, ψ) and address the consumption–investment
problem under the QSM model of Kikuchi and Kusuda [13]. We arrive at the
following main results.

First, we derive the worst-case probability for a given consumption and
“investment,” which is the inner product of the volatility matrix of risky se-
curities and the vector of the fractions of wealth invested in those securities.
Comparing the budget constraint under the worst-case probability with the
budget constraint under the base probability, we show that the volatility of
wealth is invariant, whereas the market price of risk is replaced by the “in-
vestor price of uncertainty” discounted from the market price of risk. Given
that the discount from the market price of risk is permanent, this implies that
investors with HREZ utility do not assume high volatility of their portfolio,
but rather a low long-term return as the worst-case scenario.

Second, we derive first expressions of the optimal control and the investor
price of uncertainty, both of which depend on the unknown indirect utility
function and its derivatives. We show that the optimal portfolio is decom-
posed into the sum of the myopic demand, “intertemporal marginal indirect
utility hedging demand”, “intertemporal indirect utility hedging demand”, and
inflation–deflation hedging demand. Then, we derive second expressions of the
optimal consumption and investment, as well as the investor price of uncer-
tainty, all of which depend on the unknown function governed by a nonlinear
partial differential equation (PDE). We show that the optimal robust portfo-
lio is decomposed into the sum of three demands; in this, the intertemporal
marginal indirect utility hedging demand and the intertemporal indirect utility
hedging demand are integrated into the “intertemporal uncertainty hedging
demand.” We show that the investor price of uncertainty is a weighted average
of the market price of risk and the “investor hedging value of intertemporal
uncertainty.” The weights are γ/U and θ/U where U = γ + θ.
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Third, we introduce the notion of the “worst-case real premium” on each
security, which is the real premium on each security under the worst-case
probability. We also introduce the notion of the “worst-case real discount” on
each security. We show that the worst-case real premium on each security is
a weighted average of the real premium and the real discount on the security
where the weights are the same as the investor price of uncertainty. Further-
more, we introduce the notion of the “long-term real premium,” “worst-case
long-term real discount,” and “worst-case long-term real premium.” We de-
rive analytical expressions of the long-term real premiums, and show that the
worst-case long-term real premium is a weighted average of the long-term real
premium and the worst-case long-term real discount.

Fourth, we derive a solution to the nonlinear PDE for the unit EIS case
(ψ = 1), and an approximate solution for the general case (ψ ̸= 1), and show
analytical expressions of the optimal consumption and investment and the
investor price of uncertainty. Investor price uncertainty is approximated to be
an affine function of the state vector in which each coefficient is a function of
the ratio of ambiguity aversion to uncertainty aversion. Furthermore, we derive
analytical expressions of the worst-case real premiums and worst-case long-
term real premiums. Therefore, we can identify γ and θ from the information
related to the worst-case rates of return on securities.

Fifth, we quantitatively analyze the relationship between the worst-case
long-term real premiums on the S&P500 and 10-year TIPS (treasury inflation-
indexed securities) and the ratio of ambiguity aversion to uncertainty aversion
in the unit EIS case. We assume the QSM model estimated by Kikuchi and
Kusuda [15] and investor’s HREZ utility with (β, ψ) = (0.04, 1) and U = 4. In
the case of the S&P500, for every increase of 0.1 in θ/U , the worst-case long-
term real premium falls significantly. Therefore, if they tell us their subjective
worst-case long-term expected rate of return on the S&P500 or the difference
between their subjective long-term expected rate of return and their subjective
long-term worst-case long-term rate of return, then we can estimate γ and θ
with high precision. In the case of the 10-year TIPS, the worst-case long-term
real premiums are slightly higher than the long-term real premiums, indicating
a worst-case probability insurance function for the such TIPS.

The remainder of this paper is organized as follows. In Section 2, we review
the QSM model and HREZ utility. In Section 3, we derive the first and second
expressions of the optimal robust control and investor price of uncertainty. In
Section 4, we introduce the notion of the worst-case premiums and the worst-
case long-term real premiums. In Section 5, we derive analytical expressions
of the optimal robust control, investor price of uncertainty, and the worst-case
long-term premiums. Section 6 provides a numerical analysis of the worst-case
long-term premiums, and Section 7 conculdes this study.

2 Review of QSM Model and HREZ Utility

First, we review the QSM model, HREZ utility, and the dynamics of no-
arbitrage prices. Next, we show analytical expressions of the expected real rates
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of return on securities and real budget constraint, followed by the consumption–
investment problem.

2.1 QSM Model

We consider frictionless US markets over the period [0,∞). Investors’ common
subjective probability and information structure are modeled by a complete
filtered probability space (Ω,F ,F,P), where F = (Ft)t∈[0,∞) is the natural
filtration generated by an N -dimensional standard Brownian motion Bt. We
denote the expectation operator under P by E and the conditional expectation
operator given Ft by Et.

There are markets for a consumption commodity and securities at every
date t ∈ [0,∞), and the consumer price index pt is observed. The traded
securities areK-types of indices, the instantaneously nominal risk-free security
called the money market account and a continuum of zero-coupon bonds and
zero-coupon inflation-indexed bonds whose maturity dates are (t, t+τ∗], where
τ∗ is the longest time to maturity of the bonds. Each zero-coupon bond has a
one US dollar payoff at maturity, and each zero-coupon inflation-indexed bond
has a pT US dollar payoff at maturity T .

On every date t, Pt, P
T
t , QTt , and S

k
t denote the USD prices of the money

market account, zero-coupon bond with maturity date T , zero-coupon inflation-
indexed bond with maturity date T , and k-th index, respectively. Let A′ and
In denote the transpose of A and n× n identity matrix, respectively.

We assume the following QSMmodel introduced by Kikuchi and Kusuda [13].

Assumption 1 Let (ρ0, ι0, δ0k, σ0k), (λ, ρ, ι, σp, δk, σk), and (R,∆k, Σk) de-
note scalers, N -dimensional vectors, and N × N positive-definite symmetric
matrices, respectively, where k ∈ {1, · · · ,K}.
1. State vector process Xt is N -dimensional and satisfies the following SDE:

dXt = −KXt dt+ IN dBt, (2.1)

where K is an N ×N lower triangular matrix.
2. Market price λt of risk and instantaneous nominal risk-free rate rt are

provided as

λt = λ+ ΛXt, rt = ρ0 + ρ′Xt +
1

2
X ′
tRXt, (2.2)

where Λ is an N ×N matrix.
3. Consumer price index pt satisfies

dpt
pt

= µp(Xt) dt+ σp(Xt)
′dBt, p0 = 1, (2.3)

where µp(Xt) and σ
p(Xt) are given by

µp(Xt) = ι0 + ι′Xt +
1

2
X ′
tIXt, (2.4)

σp(Xt) = σp +ΣpXt, (2.5)

where I is an N ×Npositive-semidefinite symmetric matrix.
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4. The dividend of the k-th index is given by

Dk
t =

(
δ0k + δ′kXt +

1

2
X ′
t∆kXt

)
exp

(
σ0kt+ σ′

kXt +
1

2
X ′
tΣkXt

)
. (2.6)

5. The parameters introduced above and a matrix R̄ defined by

R̄ = R− I +Σ′
pΛ+ Λ′Σp (2.7)

satisfy the regularity conditions shown in Appendix A.1.
6. Markets are complete and arbitrage-free.

2.2 HREZ Utility

Let f denote the normalized aggregator of the form:

f(c, v) =


β

1− ψ−1
(1− γ)v

((
c
(
(1− γ)v

)− 1
1−γ
)1−ψ−1

− 1

)
, if ψ ̸= 1,

β(1− γ)v
(
log c− 1

1− γ
log
(
(1− γ)v

))
, if ψ = 1,

(2.8)
where β > 0 is the subjective discount rate, γ ∈ (0, 1) ∪ (1,∞) is the relative
risk aversion, and ψ > 0 is the EIS.

Let P denote the set of all equivalent probability measures4 of P. We assume
an infinite-live investor with HREZ utility.

Assumption 2 The investor’s utility is HREZ utility of the form:

U(c) = inf
Pξ∈P

Eξ

[∫ ∞

0

(
f(ct, V

ξ
t ) +

(1− γ)V ξt
2θ

|ξt|2
)
dt

]
, (2.10)

where c is a consumption plan such that c = (ct)t∈[0,T∗) is an adapted non-

negative consumption-rate process, Eξ is the expectation under Pξ, θ > 0 is
relative ambiguity aversion, and V ξt is the utility process, defined recursively
as

V ξt = Eξt

[∫ ∞

t

(
f(cs, V

ξ
s ) +

(1− γ)V ξs
2θ

|ξs|2
)
ds

]
. (2.11)

4 A probability measure P̃ is said to be an equivalent probability measure of P if and only
if P(A) = 0 ⇔ P̃(A) = 0. It follows from Girsanov’s theorem that any equivalent probability
measure is characterized by a measurable process ξt with Novikov’s integrability condition
as the following Radon-Nikodym derivative:

ET∗

[
dPξ

dP

]
= exp

(∫ T∗

0
ξt dBt −

1

2

∫ T∗

0
|ξt|2dt

)
∀T ∗ ∈ (0,∞). (2.9)
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2.3 Dynamics of No-Arbitrage Prices of Securities

Let τ = T−t denote the time to maturity of bond PTt or inflation-indexed bond
QTt . Batbold et al. [2] show the dynamics of no-arbitrage prices of securities
(For the proof, see Batbold et al. [2]).

Lemma 1 Under Assumptions 1 and 2, the stochastic differential equations
(SDEs) of security price processes satisfy the following:

1. The default-free bond with time τ to maturity:

dPTt
PTt

= (rt + (σ(τ) +Σ(τ)Xt)
′λt) dt+ (σ(τ) +Σ(τ)Xt)

′ dBt, (2.12)

where (Σ(τ), σ(τ)) is a solution to the system of ODEs (A.3) and (A.4).
2. The default-free inflation-indexed bond with time τ to maturity:

dQTt
QTt

=

(
rt+

(
σq(τ)+Σq(τ)Xt

)′
λt

)
dt+

(
σq(τ)+Σq(τ)Xt

)′
dBt, (2.13)

where (Σq(τ), σq(τ)) = (Σ̄q(τ) + Σp, ς̄q(τ) + σp) and (Σ̄q(τ), ς̄q(τ)) is a
solution to the system of ODEs (A.5) and (A.6).

3. The k-th index:

dSkt +Dk
t dt

Skt
= (rt + (σk +ΣkXt)

′λt) dt+ (σk +ΣkXt)
′ dBt, (2.14)

where Σk is a solution to Eq. (A.7) and σk is given by Eq. (A.8).

We define the nominal premiums on PTt , Q
T
t and Skt by

νT (Xt)dt = Et

[
dPTt
PTt

]
−rt, νTq (Xt)dt = Et

[
dQTt
QTt

]
−rt, νk(Xt)dt = Et

[
dSkt +Dk

t dt

Skt

]
−rt.

(2.15)
It follows from Eqs. (2.12), (2.13), (2.14), and (2.15) that the premiums on
PTt , Q

T
t and Skt are expressed as

νT (Xt) =
(
σ(τ) +Σ(τ)Xt

)′
λt,

νTq (Xt) =
(
σq(τ) +Σq(τ)Xt

)′
λt,

νk(Xt) =
(
σk +ΣkXt

)′
λt.

(2.16)

Considering that the quadratic model assumes that rt is a quadratic function
and of Xt and λt is an affine function of Xt, Eq. (2.16) shows that the expected
nominal rates of return on securities are quadratic functions of the state vector.

2.4 Real Premiums and Real Budget Constraint

Let Pt(τ) = PTt and Qt(τ) = QTt where τ = T − t.
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Assumption 3 The investor invests in Pt, Pt(τ1), · · · , Pt(τIP ), Qt(τ
q
1 ), · · · , Qt(τ

q
IQ
),

and S1
t , · · · , SKt at time t where IP + IQ + K = N . Let ΦP (τ) and ΦQ(τ q)

denote the portfolio weights of a default-free bond with τ -time to maturity and
a default-free inflation-indexed bond with τ q-time to maturity, respectively. Let
Φk denote the portfolio weight of the k-th index. Let Φt and Σ(Xt) denote the
portfolio weight and volatility matrix at time t, respectively. Φt and Σ(Xt) are
expressed as

Φt =



ΦPt (τ1)
...

ΦPt (τIP )

ΦQt (τ
q
1 )

...

ΦQt (τ
q
IQ
)

Φ1
t
...
ΦKt


, Σ(Xt) =



(
σ(τ1) +Σ(τ1)Xt

)′
...(

σ(τIP ) +Σ(τIP )Xt

)′(
σq(τ

q
1 ) +Σq(τ

q
1 )Xt

)′
...(

σq(τ
q
IQ
) +Σq(τ

q
IQ
)Xt

)′
(σ1 +Σ1Xt)

′

...
(σK +ΣKXt)

′


, (2.17)

where Φ is an adapted process.

To derive the real budget constraint equation, we define the real market
price of risk λ̄(Xt) and real instantaneous interest rate r̄(Xt) as

λ̄(Xt) = λt − σp(Xt), (2.18)

r̄(Xt) = rt − µp(Xt) + λ′tσ
p(Xt). (2.19)

Note that λ̄(Xt) and r̄(Xt) are the quadratic functions of Xt.

λ̄(Xt) = λ̄+ Λ̄Xt, (2.20)

r̄(Xt) = ρ̄0 + ρ̄′Xt +
1

2
X ′
tR̄Xt, (2.21)

where R̄ is given by Eq. (2.7) and

λ̄ = λ− σp, Λ̄ = Λ−Σp, (2.22)

ρ̄0 = ρ0 − ι0 + λ′σp, ρ̄ = ρ− ι+ Λ′σp +Σ′
pλ. (2.23)

Let P̄Tt , Q̄
T
t , S̄

k
t , and D̄

k
t denote the real prices of PTt , Q

T
t , S

k
t , and D

k
t , respec-

tively. We define the real premiums on PTt , Q
T
t and Skt by

ν̄T (Xt)dt = Et

[
dP̄Tt
P̄Tt

]
− r̄(Xt)dt,

ν̄Tq (Xt)dt = Et

[
dQ̄Tt
Q̄Tt

]
− r̄(Xt)dt,

ν̄k(Xt)dt = Et

[
dS̄kt + D̄k

t dt

S̄kt

]
− r̄(Xt)dt.

(2.24)

Let W̄ denote the real wealth process and W̄0 > 0. We obtain the following
lemma.
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Lemma 2 Under Assumption 1, the following 1 and 2 holds:

1. The real premiums on PTt , Q
T
t and Skt are expressed as

ν̄T (Xt) =
(
σ̄(τ) + Σ̄(τ)Xt

)′
λ̄(Xt),

ν̄Tq (Xt) =
(
σ̄q(τ) + Σ̄q(τ)Xt

)′
λ̄(Xt),

ν̄k(Xt) =
(
σ̄k + Σ̄kXt

)′
λ̄(Xt).

(2.25)

where σ̄(τ) = σ(τ)−σp, Σ̄(τ) = Σ(τ)−Σp, σ̄k = σk−σp, and Σ̄k = Σk−Σp.
2. Under Assumptions 2 and 3, given an initial state (W̄0, X0), consump-

tion plan c, and self-financing portfolio weight Φ, the real budget constraint
equation is given by

dW̄t

W̄t
=

(
r̄(Xt) + ς̄ ′tλ̄(Xt)−

ct
W̄t

)
dt+ σ̄′

t dBt, W̄t > 0 ∀t ∈ (0,∞),

(2.26)
where

ς̄t = Σ(Xt)
′Φt − σpt . (2.27)

Proof See Appendix C.1.

Substituting λ̄(Xt) = λ̄+Λ̄Xt into Eq. (2.25), the real premiums on PTt , Q
T
t

and Skt are expressed as the quadratic functions of the state vector:

ν̄T (Xt) = σ̄(τ)′λ̄+
(
Σ̄(τ)′λ̄+ Λ̄′σ̄(τ)

)′
Xt +

1

2
X ′
t

(
Σ̄(τ)′Λ̄+ Λ̄′Σ̄(τ)

)
Xt,

ν̄Tq (Xt) = σ̄q(τ)
′λ̄+

(
Σ̄q(τ)

′λ̄+ Λ̄′σ̄q(τ)
)′
Xt +

1

2
X ′
t

(
Σ̄q(τ)

′Λ̄+ Λ̄′Σ̄q(τ)
)
Xt,

ν̄k(Xt) = σ̄′
kλ̄+

(
Σ̄′
kλ̄+ Λ̄′Σ̄k

)
Xt +

1

2
X ′
t

(
Σ̄′
kΛ̄+ Λ̄′Σ̄k

)
Xt.

(2.28)

The real budget constraint (2.26) indicates that (c, ς̄) is the control in
the optimal consumption–investment problem. X = (W̄ ,X ′)′. We call ς̄ the
investment control. Control (c, ς̄) is admissible if it satisfies the real budget
constraint equation (2.26) with initial state X0 and there are measurable func-
tions ĉ(x) and ς̂(x) such that ct = ĉ(Xt) and ς̄t = ς̂(Xt) for every t ∈ [0,∞).
Let B(X0) denote the set of admissible controls. Furthermore, we call ξ in
Eq. (2.9) the probability control, which is admissible if it satisfies Novikov’s

condition and there is a measurable function ξ̂(x) such that ξ̂(Xt) = ξt for

every t ∈ [0,∞). Let P̂(X0) denote the set of admissible probability controls.
Given Ft and Xt, the investor’s robust consumption–investment problem

and value function are recusively defined as

Vt = sup
(c,ς̄)∈B(Xt)

inf
Pξ∈P̂(Xt)

Eξ
[∫ ∞

t

(
f(cs, Vs) +

(1− γ)Vs
2θ

|ξs|2
)
ds

]
. (2.29)

The recursive definition of the above value function is justified by the fact that
HREZ utility is consistent. Given Ft and Xt = x, the indirect utility function
is defined as J(x) = Vt.
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3 Optimal Robust Control and Investor Price of Uncertainty

We derive the first expressions of the optimal robust control and investor price
of uncertainty, and show that the discount from the market price of risk to the
investor price of uncertainty increases with investment control and decreases
with “‘investor hedging value of intertemporal uncertainty.” Then, the second
expressions of the optimal robust control and investor price of uncertainty are
derived, depending on the unknown function governed by a nonlinear PDE. We
show that the investor price of uncertainty is a weighted average of the market
price of risk and the investor hedging value of intertemporal uncertainty.

3.1 Worst-Case Probability and Investor Price of Uncertainty

Given that the standard Brownian motion under Pξ is given by Bξt = Bt −∫ t

0

ξs ds, the SDE for Xt under P
ξ is rewritten as

dXt =

((
W̄t(r̄t + ς̄ ′tλ̄t)− ct

−KXt

)
+

(
W̄tς̄

′
t

IN

)
ξt

)
dt+

(
W̄tς̄

′
t

IN

)
dBξt . (3.1)

The Hamilton-Jacobi-Bellman (HJB) equation for problem (2.29) is then ex-
pressed as

0 = sup
(ĉ,ς̂)∈R+×RN

inf
ξ̂∈RN

{(
w
(
r̄(x) + ς̂ ′λ̄(x)

)
− ĉ

−Kx

)′(
Jw
Jx

)
+ ξ̂′

(
wς̂ ′

IN

)′(
Jw
Jx

)

+
1

2
tr

[(
wς̂ ′

IN

)(
wς̂ ′

IN

)′(
Jww Jwx
Jxw Jxx

)]
+ f(ĉ, J) +

(1− γ)J

2θ
|ξ̂|2
}
. (3.2)

The minimizer in the HJB Eq. (3.2) satisfies

ξ̂ = − θ

(1− γ)J

(
wς̂ ′

IN

)′(
Jw
Jx

)
. (3.3)

Let W̄ ∗ denote the optimal real wealth. Let x∗ = (w∗, x′)′, and ĉ∗(x∗) and
ς̂∗(x∗) denote the optimal consumption and investment controls, respectively.

We refer to ξ̂∗(x∗), defined by

ξ̂∗(x∗) = − θ

(1− γ)J

(
w∗ς̂∗(x)′

IN

)′(
Jw
Jx

)
, (3.4)

as the worst-case probability.

3.2 First Expressions of Optimal Robust Control and Investor Price of
Uncertainty

Under the worst-case probability, the real budget constraint (2.26) is rewritten
as

dW̄t

W̄t
=

{
r̄(Xt) + ς̂(X∗

t )
′λ̂(X∗

t )−
ĉ(Xt)

W̄t

}
dt+ ς̂(X∗

t )
′ dBξ̂

∗

t , (3.5)

where λ̂(x∗) is given by

λ̂(x∗) = λ̄(x) + ξ̂∗(x) = λ̄(x)− θ

(
w∗Jw

(1− γ)J
ς̂∗(x∗) +

Jx
(1− γ)J

)
. (3.6)
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The second term represents the discount from the market price of risk to λ̂(x∗).
Eq. (3.6) shows that the discount is proportional to the investor’s ambiguity

aversion. We refer to λ̂∗(x∗) as the “investor price of uncertainty.”

Remark 1 In Eq. (3.5), the real market price λ̄(Xt) of risk in the real budget

constraint Eq. (2.26) is replaced with λ̂(Xt), which is the investor price per
unit of investment under the worst-case probability for a given control. When
ambiguity is not considered, i.e. θ ↘ 0, the price per unit of investment risk
is the real market price λ̄(Xt) of risk, which is common to all investors. By

contrast, λ̂(Xt) varies across investors. Eq. (3.5) shows that ambiguity averse
investors value the price per unit of investment below the real market price of
risk under the conditional worst-case probability.

Remark 2 In Eq. (3.5), under the worst-case probability assumed by investors
with HREZ utility, the investment control ς̂(Xt), which is the volatility of
the wealth process, is as assumed under the base probability; however, its
price λ̂(Xt) is permanently discounted from the market price of risk. This
implies that investors with HREZ utility do not assume high volatility of their
portfolio, but rather a low long-term return as the worst-case scenario.

Let
U = −w

∗Jww
Jw

+ θ
w∗Jw

(1− γ)J
. (3.7)

We obtain the following lemma.

Lemma 3 Under Assumptions 1–3, the optimal control for the problem (2.29)
satisfies

ĉ∗(X∗
t ) =

{
βJ−1

w (1− γ)J, if ψ = 1,

βψJ−ψ
w

(
(1− γ)J

) γψ−1
γ−1 , if ψ ̸= 1,

(3.8)

ς̂∗(X∗
t ) =

1

U

(
λ̄(Xt) +

Jxw
Jw

− θJx
(1− γ)J

)
, (3.9)

where J is a solution of the following PDE:

0 =
1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

1

2

(
w∗2Jww − θw2J2

w

(1− γ)J

)−1

|π(x)|2

+r̄(x)w∗Jw−(Kx)′Jx+

β
{
(1− γ)(log ĉ∗ − 1)− log

(
(1− γ)

)}
J, if ψ = 1,

1

ψ − 1
ĉ∗Jw − β(1− γ)

1− ψ−1
J, if ψ ̸= 1,

(3.10)

where
π(x) = −w∗Jw

(
λ̄(x) +

Jxw
Jw

− θJx
(1− γ)J

)
. (3.11)

Proof See Appendix C.2.

Remark 3 Strictly speaking, (ĉ∗(X∗
t ), ς̂

∗(Xt)) is a candidate for optimal con-
trol because we do not provide a verification theorem. We tentatively call this
optimal control in this study.
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From Eqs. (2.27) and (3.9), optimal robust portfolio Φ∗
t satisfies

Σ(Xt)
′Φ∗
t − σp(Xt) =

1

U

(
λ̄t +

Jxw
Jw

− θ
Jx

(1− γ)J

)
. (3.12)

Thus, from Eq. (2.18), we decompose the optimal robust portfolio into the
following four terms:

Φ∗
t =

1

U
Σ(Xt)

′−1λt +
1

U
Σ(Xt)

′−1 Jxw
Jw

− 1

U
Σ(Xt)

′−1 θJx
(1− γ)J

+

(
1− 1

U

)
Σ(Xt)

′−1σp(Xt). (3.13)

The first term is the myopic demand. The fourth term insures inflation–
deflation risk, as presented by Kikuchi and Kusuda [13],which is reffered to as
the inflation–deflation hedging demand.

Remark 4 Note that the indirect utility function depends on both γ and θ
because the PDE (3.10) depends not only on γ but also on θ. Thus, the second
and third terms in Eq. (3.13) are related to the intertemporal uncertainty on
marginal indirect utility and indirect utility, respectively. The second term
hedges against intertemporal uncertainty in marginal indirect utility due to
state changes, whereas the third term hedges against intertemporal uncertainty
in indirect utility due to state changes. Therefore, we call the second term the
“intertemporal marginal indirect utility hedging demand” and the third term
the “intertemporal indirect utility hedging demand.” Note that intertemporal
indirect utility hedging demand disappears when θ = 0.

From the PDE (3.10), we infer that the indirect utility function takes the
form in Eq. (3.14):

J(x) =


w1−γ

1− γ

(
G(x)

)1−γ
, if ψ = 1,

w1−γ

1− γ

(
G(x)

) 1−γ
ψ−1 , if ψ ̸= 1.

(3.14)

The partial derivatives of J are given by Eq.s (B.1) and (B.2) in Appendix B.
Substituting Eq. (B.1) into Eq. (3.7), we obtain

U = γ + θ. (3.15)

Following Kikuchi and Kusuda [13], we refer to U and U−1 as the relative
uncertainty aversion and relative uncertainty tolerance, respectively.

3.3 Investor Hedging Value of Intertemporal Uncertainty

Substituting Eqs. (B.1) and (B.2) into Eqs. (3.4) and (3.6) yields

ξ̂∗(x∗) = θ
(
ς̂∗(x∗)− η∗(x∗)

)
, (3.16)

λ̂(x∗) = λ̄(x)− θ
(
ς̂∗(x∗)− η∗(x∗)

)
, (3.17)
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where

η∗(x) = − Jx
(1− γ)J

=


−Gx(x)
G(x)

, if ψ = 1,

− 1

ψ − 1

Gx(x)

G(x)
, if ψ ̸= 1.

(3.18)

Remark 5 Eq. (3.17) shows that the discount from the market price of risk to

λ̂(x∗) increases with investment control ς̂(x∗) and that it decrease with η∗(x).

We refer to η∗(Xt) as the “investor hedging value of intertemporal uncer-
tainty.”

3.4 Second Expressions of Optimal Robust Control and Investor Price of
Uncertainty

We obtain the following proposition.

Proposition 1 Under Assumptions 1–3, the optimal wealth, consumption,
investment, and investor price of uncertainty for the problem (2.29) satisfy
Eqs. (3.19), (3.20), (3.21), and (3.22), respectively.

dW̄ ∗
t

W̄ ∗
t

=

∫ t

0

(
r̄(Xs) + ς̂∗(Xs)

′λ̄(Xs)−
ĉ∗(X∗

s)

W̄ ∗
s

)
ds+

∫ t

0

ς̂∗(Xs)
′ dBs

)
, (3.19)

ĉ∗(X∗
t ) =

βW̄
∗
t , if ψ = 1,

βψ

G(Xt)
W̄ ∗
t , if ψ ̸= 1,

(3.20)

ς̂∗(Xt) =
1

γ + θ
λ̄(Xt) +

(
1− 1

γ + θ

)
η∗(Xt), (3.21)

λ̂∗(Xt) =
γ

γ + θ
λ̄(Xt) +

θ

γ + θ
η∗(Xt), (3.22)

where G is a solution of the following PDE:

1. The unit EIS case

1

2
tr

[
Gxx
G

]
−
(
1− 1

2
(γ + θ)−1

) ∣∣∣∣GxG
∣∣∣∣2−(Kx+(1− (γ+θ)−1

)
λ̄(x)

)′Gx
G

− β logG+
1

2(γ + θ)
|λ̄(x)|2 + r̄(x) + β(log β − 1) = 0. (3.23)

2. The general case:

1

2
tr

[
Gxx
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2 − (Kx+

(
1− (γ + θ)−1

)
λ̄(x)

)′Gx
G

+
βψ

G
+

ψ − 1

2(γ + θ)
|λ̄(x)|2 + (ψ − 1) r̄(x)− βψ = 0. (3.24)

Proof See Appendix C.3.
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Remark 6 Eqs (3.23) and (3.24) show that G depends only on β, ψ, and
U = γ + θ, but not on γ and θ. Thus, Eq. (3.18) shows that the investor
hedging value of intertemporal uncertainty also depends only on β, ψ, and
U , but not on γ and θ. Eq. (3.21) shows that the optimal investment is the
weighted average of the market price of risk and the investor hedging value of
intertemporal uncertainty, and the weights are U−1 and 1−U−1, respectively.
Hence, Eqs. (3.19) and (3.20) show that the optimal wealth and consump-
tion also depends only on β, ψ, and U , but not on γ and θ. Therefore, HREZ
utility with (β, γ1, θ1, ψ) is observationally indistinguishable from that with
(β, γ2, θ2, ψ) if γ1 + θ1 = γ2 + θ2 = U .

Remark 7 Eq. (3.22) shows that the investor price λ̂∗(x∗) of uncertainty de-
pends only on x and not on w∗. This result follows from the homotheticity
of HREZ utility. Eq. (3.22) also shows that λ̂∗(x∗) is the weighted average
of the market price of risk and the investor hedging value of intertemporal
uncertainty where the weights are γ/U and θ/U , respectively.

From Eqs. (2.27) and (3.22), the optimal robust portfolio is rewritten as

Φ∗(Xt) =
1

γ + θ
Σ(Xt)

′−1λt +

(
1− 1

γ + θ

)
Σ(Xt)

′−1η∗(Xt)

+

(
1− 1

γ + θ

)
Σ(Xt)

′−1σp(Xt). (3.25)

Remark 8 The intertemporal marginal indirect utility hedging demand and
intertemporal indirect utility hedging demand in Eq. (3.13) are integrated
into the second term in Eq. (3.25). We refer to the second term in Eq. (3.25)
as the “intertemporal uncertainty hedging demand.”

4 Worst-Case Premiums and Long-Term Premiums

We introduce the notion of the worst-case real premiums and discounts, and
then, the notion of the long-term real premiums and show their analytical
expressions. Next, we introduce the long-term worst-case real discounts and
premiums.

4.1 Worst-Case Premiums and Worst-Case Discounts

We introduce the notion of the worst-case real premiums on PTt , Q
T
t and Skt ,

defined by

ν̂T (Xt)dt = Eξ̂
∗

t

[
dP̄Tt
P̄Tt

]
− r̄(Xt),

ν̂Tq (Xt)dt = Eξ̂
∗

t

[
dQ̄Tt
Q̄Tt

]
− r̄(Xt),

ν̂k(Xt)dt = Eξ̂
∗

t

[
dS̄kt + D̄k

t dt

S̄kt

]
− r̄(Xt).

(4.1)
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We verify that the worst-case real premiums on P̄Tt , Q̄
T
t and S̄kt are expressed

as

ν̂T (Xt) =
(
σ̄(τ) + Σ̄q(τ)Xt

)′
λ̂∗(Xt),

ν̂Tq (Xt) =
(
σ̄q(τ) + Σ̄q(τ)Xt

)′
λ̂∗(Xt),

ν̂k(Xt) =
(
σ̄k + Σ̄kXt

)′
λ̂∗(Xt).

(4.2)

We introduce the notion of the worst-case real discounts on PTt , Q
T
t and

Skt , defined by

ζ̂T (Xt) =
(
σ̄(τ) + Σ̄q(τ)Xt

)′
η∗(Xt),

ζ̂Tq (Xt) =
(
σ̄q(τ) + Σ̄q(τ)Xt

)′
η∗(Xt),

ζ̂k(Xt) =
(
σ̄k + Σ̄kXt

)′
η∗(Xt).

(4.3)

Substituting Eq. (3.22) into Eq. (4.2) and substituting Eqs. (2.25) and (4.3)
into the resultant equation, we obtain the second expression of the worst-case
real premiums on PTt , Q

T
t and Skt .

ν̂T (Xt) =
γ

γ + θ
ν̄T (Xt) +

θ

γ + θ
ζ̂T (Xt),

ν̂Tq (Xt) =
γ

γ + θ
ν̄Tq (Xt) +

θ

γ + θ
ζ̂Tq (Xt),

ν̂k(Xt) =
γ

γ + θ
ν̄k(Xt) +

θ

γ + θ
ζ̂k(Xt).

(4.4)

Remark 9 Eq. (4.4) shows that the worst-case real premiums are the weighted
average of the real premiums and the worst-case real discounts, where the
weights are the same as the investor price of uncertainty.

4.2 Long-Term Premiums

We introduce the notion of the long-term real premiums on Pt, P̄
T
t , Q̄

T
t and

S̄kt , defined by

r̄ = E[ lim
t→∞

r̄(Xt)], ν̄(τ) = E[ lim
t→∞

ν̄T (Xt)], ν̄q(τ) = E[ lim
t→∞

ν̄Tq (Xt)], ν̄k = E[ lim
t→∞

ν̄k(Xt)].

(4.5)
We obtain the following proposition.

Proposition 2 Under Assumptions 1 and 2, the following 1 and 2 holds:

1. The stationary distribution of the state vector process is N(0,ΣX) where
ΣX is a unique positive-definite symmetric solution to the following stan-
dard Lyapunov equation.

−KΣX −ΣXK′ + IN = 0. (4.6)
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2. The long-term real instantaneous interest rate and the long-term real pre-
miums are expressed as

r̄ = ρ̄0 +
1

2
tr
[
ΣXR̄

]
,

ν̄(τ) = σ̄(τ)′λ̄+
1

2
tr
[
ΣX

(
Σ̄(τ)′Λ̄+ Λ̄′Σ̄(τ)

)]
,

ν̄q(τ) = σ̄q(τ)
′λ̄+

1

2
tr
[
ΣX

(
Σ̄q(τ)

′Λ̄+ Λ̄′Σ̄q(τ)
)]
,

ν̄k = σ̄′
kλ̄+

1

2
tr
[
ΣX

(
Σ̄′
kΛ̄+ Λ̄′Σ̄k

)]
.

(4.7)

Proof From Eq. (2.1), Xt is solved as Xt = e−tKX0 +

∫ t

0

e(s−t)K dBs. Gar-

diner [10] shows that if all the eigenvalues of K have positive real parts,5

E[X∞] = 0 and the variance–covariance matrix of X∞ is given by

E[X∞X
′
∞] = E

[
lim
t→∞

∫ t

0

e(s−t)Ke(s−t)K
′
ds
]
= ΣX , (4.8)

where ΣX is the solution to Eq. (4.6). Thus, the stationary distribution of the
state vector process is N(0,ΣX). Therefore, by substituting Eqs. (2.21) and
(2.28) into (4.5), we obtain Eq. (4.7).

4.3 Worst-Case Long-Term Discounts and Premiums

First, we introduce the notion of the worst-case long-term real disounts on
P̄Tt , Q̄

T
t and S̄kt , defined by

ζ̂(τ) = E[ lim
t→∞

ζ̂T (Xt)], ζ̂q(τ) = E[ lim
t→∞

ζ̂Tq (Xt)], ζ̂k = E[ lim
t→∞

ζ̂k(Xt)].

(4.9)
Second, we define the worst-case long-term real premiums on P̄Tt , Q̄

T
t and S̄kt

by

ν̂∗(τ) = E[ lim
t→∞

ν̂T (Xt)], ν̂∗q (τ) = E[ lim
t→∞

ν̂Tq (Xt)], ν̂∗k = E[ lim
t→∞

ν̂k(Xt)].

(4.10)
From Eqs. (4.4), (4.7), and (4.10), we obtain the following expressions of the
worst-case long-term real premiums.

ν̂∗(τ) =
γ

γ + θ
ν̄(τ) +

θ

γ + θ
ζ̂(τ),

ν̂∗q (τ) =
γ

γ + θ
ν̄q(τ) +

θ

γ + θ
ζ̂q(τ),

ν̂∗k =
γ

γ + θ
ν̄k +

θ

γ + θ
ζ̂k.

(4.11)

The following section presents the analytical expressions of the worst-case
long-term real discounts and the worst-case long-term real premiums.

5 This condition is satisfied, because all the eigenvalues are assume to be positive in
Appendix A.1.
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5 Analytical Expressions of Optimal Robust Control and
Worst-Case Premiums

We derive an analytical expression of the optimal robust control for the unit
EIS case (ψ = 1) and an approximate analytical expression for the general case
(ψ ̸= 1). Then, we show that the investor price of uncertainty is approximated
as an affine function of the state vector in which each coefficient is a function
of the ratio of ambiguity aversion to uncertainty aversion. We derive an an-
alytical expression of the worst-case real premiums and worst-case long-term
real premiums.

5.1 Optimal Solution for the Unit EIS Case

An analytical solution of the PDE (3.23) is expressed as:

G(x) = exp

(
a0 + a′x+

1

2
x′Ax

)
, (5.1)

where A is a symmetric matrix.
We obtain the following theorem.

Theorem 1 Under Assumptions 1–3, the indirect utility function, optimal
consumption, investment, and investor price of uncertainty for problem (2.29)
satisfy Eqs. (5.2), (3.20), (5.3), and (5.4), respectively.

J(X∗
t ) =

W̄ ∗1−γ
t

1− γ
exp

(
a0 + a′Xt +

1

2
X ′
tAXt

)
, (5.2)

ς̂∗(Xt) =
1

γ + θ
(λ̄+ Λ̄Xt) +

(
1− 1

γ + θ

)(
−(a+AXt)

)
, (5.3)

λ̂∗(Xt) =
γ

γ + θ
λ̄(Xt) +

θ

γ + θ

(
−(a+AXt)

)
, (5.4)

where (A, a, a0) is a solution of the simultaneous Eqs. (5.5)–(5.7):

−
(
K+

(
1− (γ + θ)−1

)
Λ̄+

1

2
βIN

)′
A−A

(
K+

(
1− (γ + θ)−1

)
Λ̄+

1

2
βIN

)
−
(
1− (γ + θ)−1

)
A2 + (γ + θ)−1Λ̄′Λ̄+ R̄ = 0, (5.5)

((
1− (γ + θ)−1

)
A+K +

(
1− (γ + θ)−1

)
Λ̄
)′
a

=
(
1− (γ + θ)−1

)
Aλ̄+ (γ + θ)−1Λ̄′λ̄+ ρ̄, (5.6)

βa0 =
1

2
tr[A]+

(
(γ+θ)−1−1

)(1

2
|a|2 + λ̄′a

)
+
1

2
(γ+θ)−1|λ̄|2+ρ̄0+β(log β−1).

(5.7)

Proof See Appendix C.4.
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5.2 Approximate Optimal Solution for the General Case

For the general case, that is, ψ ̸= 1, we derive an approximate optimal solution
by applying the loglinear approximation method presented by Campbell and
Viceira [6] to our QSM model. Both nonlinear and nonhomogeneous terms
appear in the PDE (3.24). From Eq. (3.20), the nonhomogeneous term βψ/G is
expressed as βψ/G = ĉ∗/w. Considering that the optimal consumption-wealth
ratio is stable, Campbell and Viceira [6] make a loglinear approximation of
the nonhomogeneous term and derive an approximate solution. We apply the
loglinear approximation to the nonhomogeneous term.

1

G(x)
≈ g0 − g1 logG(x), (5.8)

where
g0 = g1(1− log g1), (5.9)

g1 = exp
(
−E
[
lim
t→∞

logG(Xt)
])
. (5.10)

Substituting Eq. (5.1) into Eq. (5.10) yields

g1 = exp

([
−a0 − a′E[ lim

t→∞
Xt]−

1

2
E[ lim
t→∞

X ′
tAXt]

])
. (5.11)

Considering X∞ ∼ N(0,ΣX), we obtain

g1 = g1(A, a0) := exp

(
−a0 −

1

2
tr
[
ΣXA

])
. (5.12)

In the PDE (3.24), approximating the nonhomogeneous term by Eq. (5.8)
yields the following approximate PDE:

1

2
tr

[
Gxx
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2 − (Kx+

(
1− (γ + θ)−1

)(
λ̄+ Λ̄x

))′Gx
G

−βψg1 logG+βψg0+
ψ − 1

2(γ + θ)

∣∣λ̄+ Λ̄x
∣∣2+(ψ−1)

(
ρ̄0 + ρ̄′x+

1

2
x′R̄x

)
−βψ = 0.

(5.13)

The optimal control and investor price of uncertainty based on the approx-
imate PDE (5.13) are called the approximate optimal control and investor
price of uncertainty, denoted by (c̃∗(X∗

t ), ς̃
∗(Xt)) and λ̃∗(Xt). We obtain the

following proposition.

Theorem 2 Under Assumptions 1–3, if there is a unique solution to the si-
multaneous Eqs. (5.17)–(5.19), then the approximate optimal consumption, in-
vestment, and investor price of uncertainty for problem (2.29) satisfy Eqs. (5.14),
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(5.15), and (5.16), respectively:

c̃∗(X∗
t ) = W̃ ∗

t exp

[
−
(
a0 + a′Xt +

1

2
X ′
tAXt

)]
, (5.14)

ς̃∗(Xt) =
1

γ + θ
(λ̄+ Λ̄Xt) +

(
1− 1

γ + θ

)(
− 1

ψ − 1
(a+AXt)

)
, (5.15)

λ̃∗(Xt) =
γ

γ + θ
λ̄(Xt) +

θ

γ + θ

(
− 1

ψ − 1
(a+AXt)

)
, (5.16)

where (A, a, a0) is a unique solution of the simultaneous Eqs. (5.17)–(5.19):

− 1− (γ + θ)−1

ψ − 1
A2−

(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
A−A

(
K +

(
1− (γ + θ)−1

)
Λ̄
)

− βψg1(A, a0)A+ (ψ − 1)
(
(γ + θ)−1Λ̄′Λ̄+ R̄

)
= 0, (5.17)

− 1− (γ + θ)−1

ψ − 1
Aa−K′a−

(
1− (γ + θ)−1

)
(Aλ̄+ Λ̄′a)

− βψg1(A, a0)a+ (ψ − 1)
(
(γ + θ)−1Λ̄′λ̄+ ρ̄

)
= 0, (5.18)

1

2
tr[A]− 1− (γ + θ)−1

2(ψ − 1)
|a|2 −

(
1− (γ + θ)−1

)
λ̄′a

+βψg1(A, a0)(1−a0−log g1(A, a0))+(ψ−1)

(
(γ + θ)−1

2
|λ̄|2 + ρ̄0

)
−βψ = 0.

(5.19)

Proof See Appendix C.5.

Remark 10 If g1(A, a0) is constant, then Eq. (5.17) is a Riccati differential
equation, and there is a unique symmetric solution. However, given that g1(A, a0)
is a function of (A, a0), we need to assume that there is a unique solution to
the simultaneous Eqs. (5.17)–(5.19).

5.3 Analytical Expressions of the Worst-Case Long-Term Premiums

From Eqs. (5.4) and (5.16), the investor price of uncertainty is expressed as

λ̂∗(Xt) = λ̌∗( θ/U) + Λ̌∗(θ/U)Xt, (5.20)

where

λ̌∗(θ/U)


=

(
1− θ

U

)
λ̄+

θ

U
(−a), if ψ = 1,

≈
(
1− θ

U

)
λ̄+

θ

U

(
− a

ψ − 1

)
, if ψ ̸= 1,

(5.21)
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Λ̌∗(θ/U)


=

(
1− θ

U

)
Λ̄+

θ

U
(−A), if ψ = 1,

≈
(
1− γ

U

)
Λ̄+

θ

U

(
− 1

ψ − 1
A

)
, if ψ ̸= 1,

(5.22)

Eq. (5.20) shows that the investor price of uncertainty is approximated as an
affine function of the state vector in which each coefficient is a function of the
ratio of ambiguity aversion to uncertainty aversion. Thus, from Eq. (4.2), the
worst-case real premiums are also approximated to be quadratic functions of
the state vector.

ν̂T (Xt) ≈ σ̄(τ)′λ̌∗ +
(
Σ̄(τ)′λ̌∗ + (Λ̌∗)′σ̄(τ)

)′
Xt +

1

2
X ′
t

(
Σ̄(τ)′Λ̌∗ + (Λ̌∗)′Σ̄(τ)

)
Xt,

ν̂Tq (Xt) ≈ σ̄q(τ)
′λ̌∗ +

(
Σ̄q(τ)

′λ̌∗ + (Λ̌∗)′σ̄q(τ)
)′
Xt +

1

2
X ′
t

(
Σ̄q(τ)

′Λ̌∗ + (Λ̌∗)′Σ̄q(τ)
)
Xt,

ν̂k(Xt) ≈ σ̄(τ)′λ̌∗ +
(
Σ̄′
kλ̌

∗ + (Λ̌∗)′Σ̄k

)
Xt +

1

2
X ′
t

(
Σ̄′
kΛ̌

∗ + (Λ̌∗)′Σ̄k

)
Xt,

(5.23)

where λ̌∗ = λ̌∗(θ/U) and Λ̌∗ = Λ̌∗(θ/U). Then, the analytical expressions of
the worst-case long-term real premiums are given by

ν̂∗(τ) ≈ σ̄(τ)′λ̌∗(θ/U) + 1

2
tr
[
ΣX

(
Σ̄(τ)′Λ̂∗(θ/U) + Λ̌∗(θ/U)′Σ̄(τ)

)]
,

ν̂∗q (τ) ≈ σ̄q(τ)
′λ̌∗(θ/U) + 1

2
tr
[
ΣX

(
Σ̄q(τ)

′Λ̌∗(θ/U) + Λ̌∗(θ/U)′Σ̄q(τ)
)]
,

ν̂∗k ≈ σ̄′
kλ̌

∗(θ/U) + 1

2
tr
[
ΣX

(
Σ̂′
kΛ̌

∗(θ/U) + Λ̌∗(θ/U)′Σ̄k
)]
.

(5.24)

From Eqs. (4.7) and (5.24), the difference between the long-term real premiums
and the worst-case long-term real premiums are given by

ν̄(τ)− ν̂∗(τ) ≈ σ̄(τ)′(λ̄− λ̌∗) +
1

2
tr
[
ΣX

(
Σ̄(τ)′(Λ̄− Λ̌∗) + (Λ̄− Λ̌∗)′Σ̄(τ)

)]
,

ν̄q(τ)− ν̂∗q (τ) ≈ σ̄q(τ)
′(Λ̄− Λ̌∗) +

1

2
tr
[
ΣX

(
Σ̄q(τ)

′(Λ̄− Λ̌∗) + (Λ̄− Λ̌∗)′Σ̄q(τ)
)]
,

ν̄k − ν̂∗k ≈ σ̄′
k(λ̄− λ̌∗) +

1

2
tr
[
ΣX

(
Σ̂′
k(Λ̄− Λ̌∗) + (Λ̄− Λ̌∗)′Σ̄k

)]
,

(5.25)

where λ̌∗ = λ̌∗(θ/U) and Λ̌∗ = Λ̌∗(θ/U).
Remark 11 Suppose an investor has HREZ utility with (β, γ, θ, ψ), and we
know (β, γ + θ, ψ) from their observed consumption, wealth, and portfolio. If
they tell us their subjective worst-case long-term expected rate of return on the
S&P500 or the difference between their subjective long-term expected rate of
return and their subjective long-term worst-case long-term rate of return, then
we can calculate θ/U from Eq. (5.24) or (5.25). Therefore, we can estimate γ
and θ.
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6 Numerical Analysis of Worst-Case Premiums

We quantitatively analyze the relationship between the worst-case long-term
real premiums and the ratio of ambiguity aversion to uncertainty aversion in
the unit EIS case.

6.1 Basic Setting

We assume that the investor plans to invest in the 10-year TIPS Qt(10) and
S&P 500 S1

t , in addition to the money market account. Thus, the state vector in
the quadratic model is two-dimensional, and the portfolio weight and volatility
are given by

Φt =

(
ΦQt (10)
Φ1
t

)
, Σ(Xt) =

((
σq(10) +Σq(10)Xt

)′
(σ1 +Σ1Xt)

′

)
. (6.1)

We use the two-factor QSM model estimated by Kikuchi and Kusuda [15]
(for details, see Appendix D). Then, from simultaneous Eqs. (A.5)–(A.6) and
Eqs. (A.7)–(A.8), we obtain the following numerical solutions:

Σ̄q(10) =

(
−0.04439 0.008236
0.008236 −0.005102

)
, σ̄q(10) =

(
0.1231
0.02852

)
, (6.2)

Σ1 =

(
0.2063 0.09206
0.09206 0.3009

)
, σ1 =

(
0.2892
0.8084

)
. (6.3)

We assume (β,U) = (0.04, 4.0). To use the analytical expressions, we as-
sume ψ = 1.0. Then, we obtain the following numerical solutions of simulta-
neous Eqs. (5.5)–(5.7).

A =

(
0.05343 −0.02280
−0.02280 0.01922

)
, a =

(
−0.2483
0..004519

)
, a0 = −2.951. (6.4)

6.2 Ratio of Ambiguity Aversion to Uncertainty Aversion and Worst-Case
Long-Term Real Premiums

First, we analyze the extent to which the worst-case long-term real premiums
are valued lower than the long-term real premiums, depending on θ/U . Let
∆∗

1 = ν̄1 − ν̂∗1 . Table 1 shows the case of the S&P500.

Table 1 Ratio of ambiguity aversion to uncertainty aversion and the worst-case long-term
real premiums on the S&P500.

θ 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
γ 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0
θ/U 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ν̄1 30.3% 30.3% 30.3% 30.3% 30.3% 30.3% 30.3% 30.3% 30.3% 30.3% 30.3%
ν̂∗1 30.3% 27.2% 24.1% 21.0% 17.9% 14.7% 11.6% 8.5% 5.4% 2.3% -.0.8%
∆∗

1 0.0% 3.1% 6.2% 9.3% 12.5% 15.6% 18.7% 21.8% 24.9% 28.0% 31.1%
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For every every increase of 0.1 in θ/U , the worst-case long-term real pre-
mium falls significantly by about 3.1%, a strong indication of the robustness
effect. Therefore, if they tell us their subjective worst-case long-term expected
rate of return on the S&P500 or the difference between their subjective long-
term expected rate of return and their subjective long-term worst-case long-
term rate of return, then we can estimate γ and θ with high precision.

Remark 12 Note that the strong robustness effect as shown in Table 1 is also
due to the fact that the long-term real premium on the S&P500 is estimated to
be as high as 30.3%, which means these results are not so reliable. Although the
returns are generally difficult to estimate, the results should be re-examined
on the basis of plausible return estimates.

Let ∆∗
q(10) = ν̄q(10)− ν̂∗q (10). Table 2 shows the case of the 10-year TIPS.

Table 2 Ratio of ambiguity aversion to uncertainty aversion and the worst-case long-term
real premiums on the 10-year TIPS.

θ 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
γ 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0
θ/U 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ν̄q(10) 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8%
ν̂∗q (10) 1.8% 2.0% 2.3% 2.5% 2.8% 3.0% 3.3% 3.5% 3.8% 4.0% 4.3%

∆∗
q(10) 0.0% -0.3% -0.5% -0.8% -1.0% -1.3% -1.5% -1.8% -2.0% -2.3% -2.5%

The worst-case long-term real premiums are slightly higher than the long-
term real premiums, indicating that the 10-year TIPS has the worst-case prob-
ability insurance function.

Remark 13 Campbell and Viceira [6] argue that in, an unambiguous situation,
the risk-free security for long-term investors is not the money market account
but a long-term inflation-indexed bond with an inflation hedging function.
However, the above result shows that for long-term investors with HREZ util-
ity, a long-term inflation-indexed bond has not only an inflation hedging func-
tion, but also a worst-case probability insurance function. The money market
account, by contrast, has neither an inflation hedging function nor a worst-case
probability insurance function. Traditionally, the money market account has
been considered the risk-free security, and long-term inflation-indexed bonds
have been considered risky securities; these terms are clearly inappropriate.

7 Conclusion

We studied the consumption–investment problem based on HREZ utility with
(β, γ, θ, ψ) under the QSM model that satisfies the stylized facts in securi-
ties markets. We showed that the investor price of uncertainty is a weighted
average of the market price of risk and the “investor hedging value of intertem-
poral uncertainty,” and that the worst-case real premium on each security is
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a weighted average of the real premium and the real discount on the security
where the weights are γ/U and θ/U . Next, we derived analytical expressions of
the long-term real premiums, and showed that the worst-case long-term real
premium on each security is a weighted average of the long-term real premium
and the worst-case long-term real discount on the security.

Subsequently, after deriving a solution to the nonlinear PDE for the unit
EIS case (ψ = 1) and an approximate solution for the general case (ψ ̸= 1), we
presented the analytical expressions of the optimal consumption and invest-
ment, as well as the investor price of uncertainty. Investor price uncertainty is
approximated to be an affine function of the state vector in which each coef-
ficient is a function of the ratio of ambiguity aversion to uncertainty aversion.
We also derived the analytical expressions of the worst-case real premiums
and worst-case long-term real premiums, both of which depend on the ratio of
ambiguity aversion to uncertainty aversion. Therefore, we could identify γ and
θ from the information related to the worst-case rates of return on securities.
Our numerical analysis suggests that we can identify γ and θ with high pre-
cision, and that a long-term inflation-indexed bond had not only an inflation
hedging function, but also a worst-case probability insurance function.

A QSM Model

A.1 Regularity Conditions on Parameters

1. All the diagonal elements of K are positive.
2. R̄ is positive-definite.
3. (ρ0, ρ,R) and (δ0k, δk,∆k) satisfy

ρ0 =
1

2
ρ′R−1ρ, (A.1)

δ0k =
1

2
δ′k∆

−1
k δk. (A.2)

Condition 1 ensures that Xt is stationary. Condition 2 ensures that the real risk-free
rate has a lower bound. Conditions (A.1) and (A.2) ensure that the nominal risk-free rate
and divided are non-negative, respectively.

A.2 Parameters on Return Rates of Securities

1. The default-free bond with time τ to maturity: (Σ(τ), σ(τ)) in Eq. (2.12) is a solution
to the following system of ODEs.

dΣ(τ)

dτ
= (K+ Λ)′Σ(τ) +Σ(τ)(K+ Λ)−Σ(τ)2 +R, (A.3)

dσ(τ)

dτ
= −(K+ Λ−Σ(τ))′σ(τ)− (Σ(τ)λ+ ρ), (A.4)

with (Σ, σ)(0) = (0, 0).
2. The default-free inflation-indexed bond with time τ to maturity: (Σ(τ), σ(τ)) in Eq. (2.13)

is a solution to the following system of ODEs.

dΣ̄q(τ)

dτ
= (K+ Λ̄)′Σ̄q(τ) + Σ̄q(τ)(K+ Λ̄)− Σ̄q(τ)

2 + R̄, (A.5)

dσ̄q(τ)

dτ
= −(K+ Λ̄− Σ̄q(τ))

′σ̄q(τ)− (Σ̄q(τ)λ̄+ ρ̄), (A.6)
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with (Σ̄q , σ̄q)(0) = (0, 0).
3. The k-th index and the market portfolio: In Eq. (2.14), Σk is a solution to Eq. (A.7)

and σk is given by Eq. (A.8).

0 = (K+ Λ)′Σk +Σk(K+ Λ)−Σ2
k +R−∆k, (A.7)

σk = (K+ Λ−Σk)
′−1(δk − ρ−Σkλ), (A.8)

B Derivatives of the Indirect Utility Function

The partial derivatives of J with respect to w are given by

wJw = (1− γ)J,

w2Jww = −γ(1− γ)J.
(B.1)

The partial derivatives of J with respect to x are given by

Jx =


(1− γ)J

Gx

G
, if ψ = 1,

1− γ

ψ − 1
J
Gx

G
, if ψ ̸= 1,

wJxw =


(1− γ)2J

Gx

G
, if ψ = 1,

(1− γ)2

ψ − 1
J
Gx

G
, if ψ ̸= 1,

Jxx =


(1− γ)J

(
Gxx

G
− γ

Gx

G

G′
x

G

)
, if ψ = 1,

1− γ

ψ − 1
J

(
Gxx

G
+

2− γ − ψ

ψ − 1

Gx

G

G′
x

G

)
, if ψ ̸= 1.

(B.2)

C Proof

C.1 Proof of Lemma 2

For the proof of Lemma 2.2, see Kikuchi and Kusuda [14]. We prove Lemma 2.1, which is
enough to prove the case of PTt . From Ito’s lemma, the rate of return on PTt is calculated
as

dP̄Tt
P̄Tt

=
dPTt
PTt

−
dpt

pt
−

(
dpt

pt

)′ (dP̄Tt
P̄Tt

)
=
(
rt +

(
σ(τ) +Σ(τ)Xt

)′
λt − µp(Xt)−

(
σ̄(τ) + Σ̄(τ)Xt

)′
σp(Xt)

)
dt+

(
σ̄(τ) + Σ̄(τ)Xt

)
dBt

=
(
r̄(Xt) +

(
σ̄(τ) + Σ̄(τ)Xt

)′(
λ(Xt)− σp(Xt)

))
dt+

(
σ̄(τ) + Σ̄(τ)Xt

)
dBt

=
(
r̄(Xt) +

(
σ̄(τ) + Σ̄(τ)Xt

)′
λ̄(Xt)

)
dt+

(
σ̄(τ) + Σ̄(τ)Xt

)
dBt.

(C.1)

Therefore, we obtain Eq. (2.25).

C.2 Proof of Lemma 3

Substituting ξ̂∗ into the HJB Eq. (3.2) yields

0 = sup
(ĉ,ς̂)∈R+×RN

[
Jt +

(
w
(
r̄(x) + ς̂′barλ(x)

)
− ĉ

−Kx

)′ (
Jw
Jx

)

+
1

2
tr

[(
wς̂′

IN

)(
wς̂′

IN

)′ (
Jww Jwx
Jxw Jxx

)]
+ f(ĉ, J)−

θ

2(1− γ)J

∣∣∣∣(wς̂′IN

)′ (
Jw
Jx

)∣∣∣∣2
]
. (C.2)
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C.2.1 Proof of the Unit EIS Case

Assume ψ = 1. Substituting f(ct, J) = β(1 − γ)J log ct − βv log
(
(1 − γ)J

)
into the HJB

Eq. (C.2) yields

sup
(ĉ,ς̂)∈R+×RN

[
Jt +

(
w
(
r̄(x) + ς̂′λ̄(x)

)
− ĉ

−Kx

)′ (
Jw
Jx

)
+

1

2
tr

[(
wς̂′

IN

)(
wς̂′

IN

)′ (
Jww Jwx
Jxw Jxx

)]

−
θ

2(1− γ)J

∣∣∣∣(wς̂′IN

)′ (
Jw
Jx

)∣∣∣∣2 + β(1− γ)J log ĉ− βJ log
(
(1− γ)J

)]
= 0. (C.3)

It is evident that the optimal control (ĉ∗, ς̂∗) in the HJB Eq. (C.3) satisfies Eqs. (3.8) and
(3.9). The consumption-related terms in the HJB Eq. (C.3) are computed as

−ĉ∗Jw+β(1−γ)J log ĉ∗−βJ log
(
(1−γ)J

)
= βJ

{
(1−γ)(log ĉ∗−1)−log

(
(1−γ)J

)}
. (C.4)

The investment-related terms in the HJB Eq. (C.3) are computed as

wJwλ̄(x)
′ ς̂∗ +

1

2
tr

[(
w(ς̂∗)′

IN

)(
w(ς̂∗)′

IN

)′ (
Jww Jwx
Jxw Jxx

)]
−

θ

2(1− γ)J

∣∣∣∣(w(ς̂∗)′IN

)′ (
Jw
Jx

)∣∣∣∣2
=

1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

|π(x)|2

2w2

(
Jww −

θJ2
w

(1− γ)J

) , (C.5)

where π(x) is given by Eq. (3.11).
Substituting the optimal control (3.8) and (3.9) into the HJB Eq. (C.3) and using

Eqs. (C.4) and (C.5), we obtain the PDE (3.10).

C.2.2 Proof of the General Case

Assume ψ ̸= 1. Substituting f(ĉ, J) =
β

1− ψ−1
ĉ1−ψ

−1

t

(
(1−γ)J

)1− 1−ψ−1

1−γ −
β(1− γ)

1− ψ−1
J into

the HJB Eq. (C.2) yields

sup
(ĉ,ς̂)∈R+×RN

[(
w
(
r̄t + ς̂′λ̄t

)
− ĉ

−Kx

)′ (
Jw
Jx

)
+

1

2
tr

[(
wς̂′

IN

)(
wς̂′

IN

)′ (
Jww Jwx
Jxw Jxx

)]

−
θ

2(1− γ)J

∣∣∣∣(wς̂′IN

)′ (
Jw
Jx

)∣∣∣∣2 + β

1− ψ−1
ĉ1−ψ

−1(
(1− γ)J

)1− 1−ψ−1

1−γ −
β(1− γ)

1− ψ−1
J

]
= 0.

(C.6)

Optimal control (ĉ∗, ς̂∗) in the HJB Eq. (C.6) satisfies Eqs. (3.8) and (3.9). The consumption-
related terms in the HJB Eq. (C.6) are computed as

−ĉ∗Jw + f(ĉ∗, J) = ĉ∗
(
−Jw +

1

1− ψ−1
Jw

)
−
β(1− γ)

1− ψ−1
J =

1

ψ − 1
ĉ∗Jw −

β(1− γ)

1− ψ−1
J.

(C.7)
The investment-related terms in the HJB Eq. (C.6) are computed as

wJwλ̄(x)
′ ς̂∗ +

1

2
tr

[(
w(ς̂∗)′

IN

)(
w(ς̂∗)′

IN

)′ (
Jww Jwx
Jxw Jxx

)]
−

θ

2(1− γ)J

∣∣∣∣(w(ς̂∗)′IN

)′ (
Jw
Jx

)∣∣∣∣2
=

1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

(
w2Jww −

θ(wJw)2

(1− γ)J

)−1

|π(x)|2, (C.8)

where π(x) is given by Eq. (3.11).
Substituting the optimal control (3.8) and (3.9) into the HJB Eq. (C.6) and using

Eqs. (C.7) and (C.8), we obtain the PDE (3.10).
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C.3 Proof of Proposition 1

C.3.1 Proof of the Unit EIS Case

We assume ψ ̸= 1. The optimal consumption (3.20) immediately follows from Eq. (3.8).
Eq. (3.11) is rewritten as

π(x) = (γ − 1)J

(
λ̄(x)− (γ + θ − 1)

Gx(x)

G(x)

)
. (C.9)

Inserting Eqs. (3.15) and the derivatives of J into Eq. (3.9), we obtain the optimal investment
(3.21). Substituting the optimal investment (3.20), we obtain Eq. (3.17). From Eq. (C.9)
and the derivatives of J , the first to third terms in the PDE (3.10) are calculated as

1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

|π(x)|2

2w2

(
Jww −

θJ2
w

(1− γ)J

)
=
1

2
J

(
(1− γ) tr

[
Gxx

G
− γ

Gx

G

G′
x

G

]
− (1− γ)θ

∣∣∣∣GxG
∣∣∣∣2 −

γ − 1

γ + θ

∣∣∣∣λ̄(x)− (γ + θ − 1)
Gx

G

∣∣∣∣2)
=
1− γ

2
J

(
tr

[
Gxx

G
− γ

Gx

G

G′
x

G

]
− θ

∣∣∣∣GxG
∣∣∣∣2 +

1

γ + θ

∣∣∣∣λ̄(x)− (γ + θ − 1)
Gx

G

∣∣∣∣2)
=
1− γ

2
J

(
tr

[
Gxx

G

]
+

1

γ + θ
|λ̄(x)|2 −

2(γ + θ − 1)

γ + θ
λ̄(x)′

Gx

G
+

(
−γ − θ +

(γ + θ − 1)2

γ + θ

) ∣∣∣∣GxG
∣∣∣∣2)

=(1− γ)J

(
1

2
tr

[
Gxx

G

]
+

1

2(γ + θ)
|λ̄(x)|2 −

γ + θ − 1

γ + θ
λ̄(x)′

Gx

G
−

2(γ + θ)− 1

2(γ + θ)

∣∣∣∣GxG
∣∣∣∣2).
(C.10)

The fourth and fifth terms in the PDE (3.10) are computed as

r̄(x)wJw − (Kx)′Jx = (1− γ)J

(
r̄(x)− (Kx)′

Gx

G

)
. (C.11)

The sixth term in the PDE (3.10) is calculated from Eq. (3.20) as

βJ
{
(1− γ)(log ĉ∗ − 1)− log

(
(1− γ)J

)}
= β(1− γ)J

{
(log β + logw − 1)−

(
logw + logG

)}
= β(1− γ)J(log β − 1− logG

)
.

(C.12)

Substituting Eqs. (C.10)–(C.12) into the PDE (3.10) and dividing by (1 − γ)J yields the
PDE (3.23).

C.3.2 Proof of the General Case

We assume ψ ̸= 1. From Eq. (3.8), the optimal consumption (3.20) is calculated as

ĉ∗ = βψ
(
(1− γ)J

w

)−ψ (
(1− γ)J

) γψ−1
γ−1 = βψwψ

(
w1−γG

1−γ
ψ−1

)ψ−1
γ−1

= βψ
w

G
. (C.13)

Eq. (3.11) is rewritten as

π(x) = (γ − 1)J

(
λ̄(x) +

γ + θ − 1

1− ψ

Gx(x)

G(x)

)
. (C.14)

Inserting Eq. (3.15) and the derivatives of J into Eq. (3.9), we obtain the optimal investment
(3.21). Substituting the optimal investment (3.20), we obtain Eq. (3.17). From Eq. (C.14)



Worst-case Premiums and Identification of Homothetic Roust Epstein-Zin Utility 27

and the derivatives of J , the first to third terms in the PDE (3.10) are calculated as

1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

1

2

(
w2Jww −

θ(wJw)2

(1− γ)J

)−1

|π(x)|2

=J

{
1− γ

2(ψ − 1)
tr

[
Gxx

G
+

2− γ − ψ

ψ − 1

Gx

G

G′
x

G

]
−

(1− γ)θ

2(ψ − 1)2

∣∣∣∣GxG
∣∣∣∣2

+
1− γ

2(ψ − 1)2(γ + θ)

∣∣∣∣(ψ − 1)λ̄(x)− (γ + θ − 1)
Gx

G

∣∣∣∣2}
=

1− γ

ψ − 1
J

{
1

2
tr

[
Gxx

G
+

2− γ − ψ

ψ − 1

Gx

G

G′
x

G

]
−

θ

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2

+
1

2(ψ − 1)(γ + θ)

∣∣∣∣(ψ − 1)λ̄(x)− (γ + θ − 1)
Gx

G

∣∣∣∣2}

(C.15)

=
1− γ

ψ − 1
J

{
1

2
tr

[
Gxx

G

]
+

ψ − 1

2(γ + θ)
|λ̄(x)|2 −

(
1− (γ + θ)−1

)
λ̄(x)′

Gx

G

−
1

2(ψ − 1)

(
γ + ψ − 2 + θ −

(
1− (γ + θ)−1

)
(γ + θ − 1)

) ∣∣∣∣GxG
∣∣∣∣2}

=
1− γ

ψ − 1
J

{
1

2
tr

[
Gxx

G

]
+
ψ − 1

2
(γ + θ)−1|λ̄(x)|2 −

(
1− (γ + θ)−1

)
λ̄(x)′

Gx

G

−
1

2(ψ − 1)

(
ψ − (γ + θ)−1

) ∣∣∣∣GxG
∣∣∣∣2}.

The fourth and fifth terms in the PDE (3.10) are computed as

r̄(x)wJw − (Kx)′Jx =
1− γ

ψ − 1
J

(
−
Gτ

G
+ (ψ − 1)r̄(x)− (Kw)′

Gx

G

)
. (C.16)

The sixth and seventh terms in the PDE (3.10) are calculated from Eq. (3.20).

1

ψ − 1
ĉ∗Jw −

β(1− γ)

1− ψ−1
J =

1

ψ − 1

(
βψ

w

G

(1− γ)J

w
+ β(γ − 1)ψJ

)
=

1− γ

ψ − 1
J

(
βψ

G
− βψ

)
.

(C.17)

Substituting Eqs. (C.15)–(C.17) into the PDE (3.10) and dividing by
1− γ

ψ − 1
J yields the

PDE (3.24).

C.4 Proof of Theorem 1

Inserting Gx = (a+Ax)G into Eq. (3.18) yields

η∗(x) = −(a+Ax). (C.18)

By substituting Eq. (C.18) into (3.21), we obtain the optimal investment (5.3). Substituting
Eqs. (2.18), (2.19), (5.1) and derivatives of G into the PDE (3.23) and noting A′ = A and

x′
(
K+

(
1− (γ + θ)−1

)
Λ̄
)′
Ax = x′A

(
K+

(
1− (γ + θ)−1

)
Λ̄
)
x, we obtain

1

2
tr[A] +

1

2

(
(γ + θ)−1 − 1

)(
|a|2 + 2a′Ax+ x′A2x

)
−

{(
1− (γ + θ)−1

)
λ̄+

(
K+

(
1− (γ + θ)−1

)
Λ̄
)
x
}′
a−

(
1− (γ + θ)−1

)
λ̄′Ax

−
1

2
x′

(
K+

(
1− (γ + θ)−1

)
Λ̄
)′
Ax−

1

2
x′A

(
K+

(
1− (γ + θ)−1

)
Λ̄
)
x

− β

(
a0 + a′x+

1

2
x′Ax

)
+

1

2
(γ + θ)−1

(
|λ̄|2 + 2λ̄′Λ̄x+ x′Λ̄′Λ̄x

)
+ ρ̄0 + ρ̄′x+

1

2
x′R̄x+ β(log β − 1) = 0. (C.19)

As Eq. (C.19) is identical on x, we obtain Eqs. (5.5)–(5.7).
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C.5 Proof of Theorem 2

An analytical solution of the PDE (5.13) is expressed as Eq. (5.1). Substituting Eq. (5.1) into
Eq. (3.20) yields the optimal consumption (5.14). By substituting Eq. (C.18) into (3.21),
we obtain the optimal investment (5.15). Substituting G and its derivatives into the PDE
(5.13) yields

1

2
tr[A] +

1

2

(
1−

ψ − (γ + θ)−1

ψ − 1

)(
|a|2 + 2a′Ax+ x′A2x

)
−

{(
1− (γ + θ)−1

)
λ̄+

(
K+

(
1− (γ + θ)−1

)
Λ̄
)
x
}′
a−

(
1− (γ + θ)−1

)
λ̄′Ax

−
1

2
x′

(
K+

(
1− (γ + θ)−1

)
Λ̄
)′
Ax−

1

2
x′A

(
K+

(
1− (γ + θ)−1

)
Λ̄
)
x

− βψg1

(
log g1 − 1 + a0 + a′x+

1

2
x′Ax

)
+

(ψ − 1)(γ + θ)−1

2

(
|λ̄|2 + 2λ̄′Λ̄x+ x′Λ̄′Λ̄x

)
+ (ψ − 1)

(
ρ̄0 + ρ̄′x+

1

2
x′R̄x

)
− βψ = 0. (C.20)

Therefore, we obtain Eqs. (5.17)–(5.19).

D Estimation Results by Kikuchi and Kusuda [15]

Kikuchi and Kusuda [15] estimate the two-factor QSM model on 262 month-end data from
January 1999 to October 2020 observed in US security markets. The time-series data used
for the estimation are the 6-month, 5-year, and 10-year treasury spot rates, 5-year and 10-
year TIPS real spot rates, and S&P500. To reduce the estimation burden, they assume Λ is
a lower triangular matrix, Σp is a diagonal matrix, and I = 0. Their estimation results are

dXt = −KXtdt+ I2dBt = −
(

0.08049 0
−0.005062 0.1066

)
Xt dt+ I2dBt,

λt = λ+ ΛXt =

(
−0.03605
0.3500

)
+

(
0.03388 0
0.1296 0.01928

)
Xt,

rt = ρ0 + ρ′Xt +
1

2
X′
tRXt = 0.06964 +

(
−0.02395
0.06803

)′
Xt +

1

2
X′
t

(
0.004145 −0.001112
−0.001112 0.0004623

)
Xt,

it = ι0 + ι′Xt = 0.02445 +

(
0.006011
0.01658

)′
Xt,

σpt = σp +ΣpXt =

(
0.09348
0.01345

)
+

(
0.05115 0

0 0.02112

)
Xt,

Dt

St
= δ0 + δ′Xt +

1

2
X′
t∆Xt = 0.01482 +

(
0.0004861
0.001912

)′
Xt +

1

2
X′
t

(
2.917× 10−4 4.569× 10−6

4.569× 10−6 1.258× 10−4

)
Xt.
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