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GENERATING ITERATIVE SCHEMES TO LOCATE COMMON
FIXED POINTS OF NONLINEAR MAPPINGS USING

SHRINKING PROJECTION METHODS

ATSUMASA KONDO

Abstract. We introduce iterative scheme generating methods (ISGMs) to
�nd common �xed points of nonlinear mappings through shrinking projection
methods, leading to strong convergence theorems. These �ndings extend a
recent study by Kondo [Math. Ann. (2024) (published online)], which only
demonstrates weak convergence. Although ISGMs combined with shrinking
projection methods were explored in a prior study [A. Kondo, Carpathian J.
Math. 40 (2024), 819�840], that work depended on mean-valued sequence
properties. This study develops ISGMs without relying on mean-valued se-
quences, yielding in�nitely many strong convergence theorems.

1. Introduction

Let H be a real Hilbert space equipped with an inner product h�; �i and the
induced norm k�k. Let S be a mapping from C into H, where C is a nonempty
subset of H. Denote by F (S) = fx 2 C : Sx = xg the set of all �xed points of S. A
mapping S : C ! H is termed nonexpansive if kSx� Syk � kx� yk for all x; y 2
C. Due to its broad applicability, researchers have widely studied constructing a
sequence approximating a �xed point of a nonexpansive mapping. Recently, Kondo
[20] proved the following theorem:

Theorem 1.1 ([20]). Let C be a nonempty, closed, and convex subset of H and let
S; T : C ! C be quasi-nonexpansive (2:5) and demiclosed mappings (2:6). Suppose
that F (S) \ F (T ) 6= ;. Let PF (S)\F (T ) be the metric projection from H onto
F (S)\F (T ). Let fang, fbng, and fcng be sequences of real numbers in the interval
[0; 1] such that an+bn+cn = 1 for all n 2 N, limn!1anbn > 0, and limn!1ancn >
0, where N = f1; 2; � � � g. De�ne a sequence fxng in C as follows:

x1 2 C : given,
xn+1 = anyn + bnSzn + cnTwn

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy the
following conditions:

(1.1) kyn � qk � kxn � qk , kzn � qk � kxn � qk , and kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N and
(1.2) xn � yn ! 0 , xn � zn ! 0 , and xn � wn ! 0 .
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2 ATSUMASA KONDO

Then, the sequence fxng converges weakly to a point bx 2 F (S) \ F (T ), wherebx � limn!1 PF (S)\F (T )xn.

The class of mappings considered in Theorem 1.1 includes nonexpansive map-
pings, as well as more general types of mappings; see the Appendix of Kondo [20] for
further details. In Theorem 1.1, the sequence fxng is de�ned with given sequences
fyng, fzng, and fwng, and the required conditions for these sequences fyng, fzng,
and fwng are explicitly stated in (1.1) and (1.2). Consequently, many iterative
schemes can be derived from this theorem. For example, consider the following
iterative scheme:

zn = �nxn + (1� �n)Txn;(1.3)

yn = �nzn + (1� �n)Szn;
xn+1 = anyn + bnSyn + cnTyn;

where an initial point x1 2 C is provided. The coe¢ cients of the convex com-
binations �n and �n satisfy �n ! 1 and �n ! 1, respectively; see Corollary
4.4 in Kondo [20]. It can be con�rmed that yn in (1.3) satis�es the conditions
kyn � qk � kxn � qk and xn � yn ! 0. Therefore, according to Theorem 1.1, the
sequence fxng, de�ned by rule (1.3), converges weakly to a common �xed point
of S and T . The iterative scheme in (1.3) is a three-step scheme; see Noor [27],
Dashputre and Diwan [5], and Phuengrattana and Suantai [28]. By setting �n = 1
for all n 2 N in (1.3), the two-step Ishikawa iterative scheme is obtained [10]. For
more on the Ishikawa method, see Xu [32], Tan and Xu [31], and Berinde [2, 3].
This method, which generates in�nitely many iterative schemes, is referred to as
an iterative scheme generating method (ISGM); see Kondo [17, 18, 19].
In 2003, Nakajo and Takahashi [26] proposed the CQ method and proved a strong

convergence theorem for �nding a �xed point of nonexpansive mapping. In 2006,
Martinez-Yanes and Xu [24] extended the CQ method and proved the following
theorem:

Theorem 1.2 ([24]). Let C be a nonempty, closed, and convex subset of H. Let
S : C ! C be a nonexpansive mapping such that F (S) 6= ;. Let f�ng and f�ng
be sequences of real numbers in the interval [0; 1] such that 0 � �n � � < 1 and
�n ! 1, where � 2 [0; 1). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,
yn = �nxn + (1� �n)Sxn;
Xn = �nxn + (1� �n)Syn;
Cn = fh 2 C : kXn � hk2 � kxn � hk2

+ (1� �n)
�
kynk2 � kxnk2 � 2 hyn � xn; hi

�
g;

Qn = fh 2 C : hx� xn; xn � hi � 0g
xn+1 = PCn\Qnx

for all n 2 N. Then, fxng converges strongly to an element bx in F (S), wherebx = PF (S)x.
In 2008, Takahashi et al. [30] also developed the CQ method and established

a strong convergence theorem utilizing metric projections on shrinking sets fCng,
where fCng satis�es the condition Cn � Cn�1 � � � � � C1 = C. This approach is
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referred to as the shrinking projection method. For other related works, see Kimura
and Nakajo [12], as well as Ibaraki and Saejung [9]. In 2023, Kondo [18] applied
ISGMs with mean-valued sequences, such as

(1.4) xn+1 = anyn + bn
1

n

n�1X
k=0

Skzn + cn
1

n

n�1X
k=0

T kwn;

to the CQ and shrinking projection methods and obtained various strong conver-
gence theorems. For iterative methods involving mean-valued sequences, refer to
Shimizu and Takahashi [29], Atsushiba and Takahashi [1], and Kondo [23].
This study establishes ISGMs using the shrinking projection method incorporat-

ing the Martinez-Yanes and Xu method. Through these e¤orts, we derive numerous
strong convergence theorems. These results enhance Theorem 1.1, which previously
only provided weak convergence. Although ISGMs utilizing the shrinking projec-
tion method and the Martinez-Yanes and Xu method were also explored in Kondo
[19], that study�s �ndings depended on the properties of mean-valued sequences. In
contrast, as demonstrated in Theorem 1.1, this study develops ISGMs without re-
lying on mean-valued sequences. We explore a broader class of mappings, including
nonexpansive mappings as speci�c instances.
The structure of this article is as follows: Section 2 provides essential preliminary

information. In Section 3, we establish an ISGM using the shrinking projection
method. Section 4 integrates the Martinez-Yanes and Xu iterative scheme with
the shrinking projection method, further extending the ISGM. Section 5 o¤ers
a comparison between the present study and previous work [19], highlighting the
unique contributions of this research. Finally, Section 6 presents an iterative scheme
derived from the result in Section 3 to demonstrate the broad applicability of the
main �ndings of this study.

2. Preliminaries

This section introduces preliminary concepts and results. Let H represent a real
Hilbert space. For x; y; z 2 H and a; b; c 2 R such that a+ b+ c = 1, the following
holds:

kax+ by + czk2(2.1)

= a kxk2 + b kyk2 + c kzk2 � ab kx� yk2 � bc ky � zk2 � ca kz � xk2 ;
see Maruyama et al. [25] and Zegeye and Shahzad [33]. In (2.1), the conditions
a; b; c 2 [0; 1] are not strictly required. However, if a; b; c 2 [0; 1], the following
inequality holds:

(2.2) kax+ by + czk2 � a kxk2 + b kyk2 + c kzk2 :
Let F be a nonempty, closed, and convex subset of H. We de�ne PF as the metric
projection from H onto F , meaning ku� PFuk � ku� hk for all u 2 H and h 2 F .
The metric projection PF is nonexpansive and satis�es

(2.3) ku� PFuk2 + kPFu� hk2 � ku� hk2

for all u 2 H and h 2 F . Let C be a nonempty, closed, and convex subset of H
with x 2 H and d 2 R. Then, a subset D of C de�ned by

(2.4) D = fh 2 C : 0 � hx; hi+ dg
is also closed and convex; refer to Martinez-Yanes and Xu [24].
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A mapping S : C ! H with F (S) 6= ; is called quasi-nonexpansive if

(2.5) kSz � qk � kz � qk for all z 2 C and q 2 F (S):

The set of all �xed points of a quasi-nonexpansive mapping is closed and convex; see
Itoh and Takahashi [11]. Any nonexpansive mapping that has a �xed point is quasi-
nonexpansive. Denote by xn ! x and xn * x the strong and weak convergence to
a point x, respectively. Let C be a nonempty, closed, and convex subset of H and
let S : C ! C with F (S) 6= ;. The mapping S is referred to as demiclosed if

(2.6) zn � Szn ! 0 and zn * u =) u 2 F (S) ;

where fzng represents a sequence in C. Note that it is often said that I � S
is demiclosed when (2.6) holds, where I denotes the identity mapping. The quasi-
nonexpansive and demiclosed mappings include nonexpansive mappings and a broader
category of mappings; for further details, see Appendix in Kondo [20].
In what follows, we assume the existence of a common �xed point for nonlinear

mappings. The following is a simple version of classical results demonstrated in
1965 by Browder [4], Göhde [6], and Kirk [13] in certain classes of Banach spaces:

Theorem 2.1 ([4, 6, 13]). Let C be a nonempty, closed, convex, and bounded subset
of H. Let S; T : C ! C be nonexpansive mappings such that ST = TS. Then,
F (S) \ F (T ) is not empty.

For further developments on common �xed point theorems, see Hojo [7], Kondo
[14, 16], and the articles cited therein.

3. Takahashi�Takeuchi�Kubota method

This section presents a strong convergence theorem approximating a common
�xed point of two nonlinear mappings. We employ the shrinking projection method
by Takahashi et al. [30]. To achieve this, we can relax a required assumption for
mappings in comparison to (2.6). Let C be a nonempty, closed, and convex subset
of a real Hilbert space H and let S : C ! C with F (S) 6= ;. Let fzng be a sequence
in C. Following Kondo [15], consider the following condition:

(3.1) zn � Szn ! 0 and zn ! u =) u 2 F (S) :

Demiclosed mappings (2.6) or continuous mappings satisfy the condition (3.1), and
thus, broad classes of mappings, including nonexpansive mappings, satisfy this
condition (3.1). In the remainder of this article, we will focus on quasi-nonexpansive
mappings (2.5) that satisfy the condition (3.1). In the main theorems presented
below, we assume the following setting:

(?) Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let S; T : C ! C be quasi-nonexpansive mappings (2.5) that satisfy the condition
(3.1). Suppose that F (S) \ F (T ) 6= ;. Let fang, fbng, and fcng be sequences
of real numbers in the interval [0; 1] such that an + bn + cn = 1 for all n 2 N,
limn!1 anbn > 0, and limn!1ancn > 0. Let fung be a sequence in H such that
un ! u (2 H).
Then, we can prove the following theorem:
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Theorem 3.1. Assume the setting (?). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,
C1 = C;

Xn = anyn + bnSzn + cnTwn;

Cn+1 = fh 2 Cn : kXn � hk � kxn � hkg ;
xn+1 = PCn+1un+1

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy the
following conditions:

(3.2) kyn � qk � kxn � qk ; kzn � qk � kxn � qk ; kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N and
(3.3) xn � yn ! 0; xn � zn ! 0; xn � wn ! 0;

as n!1. Then, fxng converges strongly to an element bu in F (S)\F (T ), wherebu = PF (S)\F (T )u.
Proof. First, we verify the following: (a) Cn is closed and convex, (b) F (S) \
F (T ) � Cn for all n 2 N, and (c) the sequences fxng ; fyng ; fzng ; fwng ; fXng in
C, and fCng are properly de�ned. We start with the case n = 1.
(i) Given x1 2 C1 (= C), we can select y1, z1, and w1 2 C that satisfy (3.2) and

(3.3) for n = 1. For instance, if we set y1 = z1 = w1 = x1, then both (3.2) and
(3.3) hold. With x1; y1; z1; w1 2 C, X1 and C2 are de�ned as follows:

X1 = a1y1 + b1Sz1 + c1Tw1 2 C and

C2 = fh 2 C1 : kX1 � hk � kx1 � hkg :
As C1 is closed and convex, C2 is also closed and convex. Observe that F (S) \
F (T ) � C2. Choose q 2 F (S)\F (T ) (� C1) arbitrarily. From (2.5) and (3.2), we
have

kX1 � qk = ka1y1 + b1Sz1 + c1Tw1 � qk
� a1 ky1 � qk+ b1 kSz1 � qk+ c1 kTw1 � qk
� a1 ky1 � qk+ b1 kz1 � qk+ c1 kw1 � qk
� a1 kx1 � qk+ b1 kx1 � qk+ c1 kx1 � qk
= kx1 � qk :

This indicates that q 2 C2. Therefore, F (S) \ F (T ) � C2 as asserted. As F (S) \
F (T ) 6= ; is assumed, it follows that C2 6= ;. Consequently, the metric projection
PC2 exists and x2 = PC2u2 is de�ned.
(ii) Given that x2 2 C2 (with C2 � C1 = C), we can choose y2, z2, and w2 2 C

under the conditions provided in (3.2) and (3.3) for n = 2. Then, X2 and C3 are
de�ned accordingly:

X2 = a2y2 + b2Sz2 + c2Tw2 2 C and

C3 = fh 2 C2 : kX2 � hk � kx2 � hkg :
By the same reasoning as in case (i), we can con�rm that C3 is closed and convex
and that F (S) \ F (T ) � C3. As F (S) \ F (T ) 6= ; is supposed, we conclude that
C3 6= ;. Consequently, the metric projection PC3 exists and x3 = PC3u3 is de�ned.
By repeating the same argument, we can establish (a), (b), and (c) as stated.
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De�ne un = PCnu (2 Cn). The sequence fung is contained in C, as Cn � Cn�1 �
� � � � C1 = C. From un = PCnu and F (S) \ F (T ) � Cn, it follows that

(3.4) ku� unk � ku� qk

for all q 2 F (S)\F (T ) and n 2 N. This implies that the sequence fung is bounded.
From un = PCnu and un+1 = PCn+1u 2 Cn+1 � Cn, it follows that

ku� unk � ku� un+1k

for all n 2 N. In other words, the sequence fku� unkg (� R) is monotone increas-
ing. As fung is bounded, fku� unkg is also bounded. Therefore, the sequence
fku� unkg of real numbers converges.
We now show that fung converges in C, meaning that there exists u 2 C such

that

(3.5) un ! u:

Choose m;n 2 N such that m � n. As the sequence of sets fCng is shrinking, it
follows from m � n that Cm � Cn. Given that un = PCnu and um = PCmu 2
Cm � Cn, we obtain from (2.3) that

ku� unk2 + kun � umk2 � ku� umk2 :

As fku� unkg converges, it holds that un � um ! 0 as m;n ! 1, meaning that
fung is a Cauchy sequence in C. As C is closed in the real Hilbert space H, it is
complete. Thus, there exists u 2 C such that un ! u as claimed.
We now prove that

(3.6) xn ! u:

As the metric projection PCn is nonexpansive, it follows from the assumption un !
u and (3.5) that

kxn � uk � kxn � unk+ kun � uk
= kPCnun � PCnuk+ kun � uk
� kun � uk+ kun � uk ! 0

as claimed. As fxng converges, it is bounded. Moreover, from (3.3), we obtain

(3.7) zn ! u and wn ! u:

Next, observe that

(3.8) xn �Xn ! 0:

Indeed, as fxng is convergent, it holds that xn � xn+1 ! 0 as n ! 1. Given
that xn+1 = PCn+1un+1 2 Cn+1, it follows that kXn � xn+1k � kxn � xn+1k ! 0.
Therefore, we have

kxn �Xnk � kxn � xn+1k+ kxn+1 �Xnk ! 0

as claimed. As fxng is bounded, fXng is also bounded, according to (3.8).
We show that

(3.9) yn � Szn ! 0 and yn � Twn ! 0:
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Select q 2 F (S)\F (T ) arbitrarily. As S and T are quasi-nonexpansive (2.5), from
(2.1) and (3.2), the following holds:

kXn � qk2

= kan (yn � q) + bn (Szn � q) + cn (Twn � q)k2

= an kyn � qk2 + bn kSzn � qk2 + cn kTwn � qk2

�anbn kyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2

� an kyn � qk2 + bn kzn � qk2 + cn kwn � qk2

�anbn kyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2

� an kxn � qk2 + bn kxn � qk2 + cn kxn � qk2

�anbn kyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2

= kxn � qk2

�anbn kyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2 :

As bncn kSzn � Twnk2 � 0, we have

anbn kyn � Sznk2 + ancn kyn � Twnk2

� kxn � qk2 � kXn � qk2

� (kxn � qk+ kXn � qk) jkxn � qk � kXn � qkj
� (kxn � qk+ kXn � qk) kxn �Xnk :

As both fxng and fXng are bounded, and from (3.8), along with the assumptions
limn!1 anbn > 0 and limn!1ancn > 0, we obtain (3.9) as asserted.
Next, we aim to demonstrate that

(3.10) zn � Szn ! 0 and wn � Twn ! 0:

Using (3.3) and (3.9), we have

kzn � Sznk � kzn � xnk+ kxn � ynk+ kyn � Sznk ! 0:

The second part of (3.10) can be veri�ed in a similar way. As S and T satisfy the
condition (3.1), according to (3.7) and (3.10), it holds that u 2 F (S) \ F (T ).
Finally, we verify that

u
�
= lim

n!1
un = lim

n!1
xn

�
= bu �= PF (S)\F (T )u� :

As u 2 F (S) \ F (T ) and bu = PF (S)\F (T )u, it is su¢ cient to prove that ku� uk �
ku� buk. From bu 2 F (S) \ F (T ) and (3.4), it holds that ku� unk � ku� buk.
From (3.5), we obtain ku� uk � ku� buk. Therefore, u = bu. Given (3.6), we can
conclude that xn ! bu (= u). This completes the proof. �

For the convergent sequence fung (� H) in Theorem 3.1, see Theorem 4.1 and
5.2 in Hojo et al. [8]. Setting yn = zn = wn = xn in Theorem 3.1 yields the
following corollary, which corresponds to Theorem 4.1 in Kondo [15]:
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Corollary 3.1 ([15]). Assume the setting (?). De�ne a sequence fxng in C as
follows:

x1 = x 2 C : given,
C1 = C;

Xn = anxn + bnSxn + cnTxn;

Cn+1 = fh 2 Cn : kXn � hk � kxn � hkg ;
xn+1 = PCn+1un+1

for all n 2 N. Then, fxng converges strongly to an element bu in F (S) \ F (T ),
where bu = PF (S)\F (T )u.

4. Martinez-Yanes and Xu Method

In this section, we incorporate the method of Martinez-Yanes and Xu [24] into
the usual shrinking projection method presented in the previous section (Section
3). We prove the following theorem:

Theorem 4.1. Assume the setting (?). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,
C1 = C;

Xn = anyn + bnSzn + cnTwn;

Cn+1 =
n
h 2 Cn : kXn � hk2 � an kyn � hk2 + bn kzn � hk2 + cn kwn � hk2

o
;

xn+1 = PCn+1un+1

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy the
following conditions:

(4.1) kyn � qk � kxn � qk ; kzn � qk � kxn � qk ; kwn � qk � kxn � qk

for all q 2 F (S) \ F (T ) and n 2 N and

(4.2) xn � yn ! 0; xn � zn ! 0; xn � wn ! 0

as n!1. Then, fxng converges strongly to an element bu in F (S)\F (T ), wherebu = PF (S)\F (T )u.
Remark 4.1. See the de�nition of Cn+1. It follows that

kXn � hk2 � an kyn � hk2 + bn kzn � hk2 + cn kwn � hk2

() 0 � an kynk2 + bn kznk2 + cn kwnk2 � kXnk2(4.3)

�2 hayn + bzn + cwn �Xn; hi

() kXn � hk2 � kyn � hk2 + bn
�
kznk2 � kynk2 � 2 hzn � yn; hi

�
(4.4)

+cn

�
kwnk2 � kynk2 � 2 hwn � yn; hi

�
:

From (4:4), Theorem 4:1 corresponds to the Martinez-Yanes and Xu type; see Theo-
rem 1:2 in Section 1. Suppose that Xn; yn; zn; wn 2 C and an; bn; cn 2 R are given.
From (2:4) and (4:3), the set Cn+1 is closed and convex if Cn is closed and convex.



GENERATING ITERATIVE SCHEMES 9

Proof. At the outset, observe that (a) Cn is closed and convex, (b) F (S)\F (T ) �
Cn for all n 2 N, and (c) the sequences fxng, fyng, fzng, fwng, fXng (� C), and
fCng are de�ned properly. We begin with the case of n = 1.
(i) Given x1 2 C1 (= C), we can select y1, z1, and w1 2 C to satisfy (4.1) and

(4.2) for n = 1. For instance, by letting y1 = z1 = w1 = x1, those conditions are
ful�lled. With x1; y1; z1; w1 2 C, X1 and C2 are de�ned as follows:

X1 = a1y1 + b1Sz1 + c1Tw1 2 C and

C2 =
n
h 2 C1 : kX1 � hk2 � a1 ky1 � hk2 + b1 kz1 � hk2 + c1 kw1 � hk2

o
:

From (2.4) and (4.3), C2 is closed and convex as C1 (= C) is closed and convex.
We verify that F (S) \ F (T ) � C2. Let q 2 F (S) \ F (T ) (� C1). As S and T are
quasi-nonexpansive (2.5), from (2.2), it follows that

kX1 � qk2 = ka1y1 + b1Sz1 + c1Tw1 � qk2

= ka1 (y1 � q) + b1 (Sz1 � q) + c1 (Tw1 � q)k2

� a1 ky1 � qk2 + b1 kSz1 � qk2 + c1 kTw1 � qk2

� a1 ky1 � qk2 + b1 kz1 � qk2 + c1 kw1 � qk2 ;
which implies that q 2 C2. Therefore, F (S) \ F (T ) � C2 as asserted. Given the
assumption that F (S) \ F (T ) 6= ;, C2 is nonempty. Thus, the metric projection
PC2 exists and x2 = PC2u2 is de�ned.
(ii) Given x2 2 C2 (� C1 = C), we can select y2, z2, and w2 2 C such that (4.1)

and (4.2) are satis�ed for n = 2. With these elements, X2 and C3 are de�ned as
follows:

X2 = a2y2 + b2Sz2 + c2Tw2 2 C and

C3 =
n
h 2 C2 : kX2 � hk2 � a2 ky2 � hk2 + b2 kz2 � hk2 + c2 kw2 � hk2

o
:

Using the same argument as in case (i), we can demonstrate that C3 is closed and
convex and that F (S) \ F (T ) � C3. From the assumption F (S) \ F (T ) 6= ;,
we conclude that C3 6= ;. Consequently, the metric projection PC3 exists and
x3 = PC3u3 is de�ned.
Repeating the same analysis guarantees that (a), (b), and (c) are true.

De�ne un = PCnu 2 Cn. As Cn � Cn�1 � � � � � C1 = C, fung is a sequence
contained in C. We claim that

(4.5) ku� unk � ku� qk
for all q 2 F (S)\F (T ) and n 2 N, this follows from the de�nition un = PCnu and
the fact that q 2 F (S) \ F (T ) � Cn. Thus, we can conclude from (4.5) that fung
is bounded.
Note that

(4.6) ku� unk � ku� un+1k
for all n 2 N. As un = PCnu and un+1 = PCn+1u 2 Cn+1 � Cn, the inequality
(4.6) follows. This implies that fku� unkg is monotone increasing. As fku� unkg
is bounded, it is convergent.
We now prove that fung converges in C; that is, there exists u 2 C such that

(4.7) un ! u:
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Let m;n 2 N with m � n. As un = PCnu and um = PCmu 2 Cm � Cn, from (2.3),
it holds that

ku� unk2 + kun � umk2 � ku� umk2 :
As fku� unkg is convergent, it follows that un � um ! 0 as m;n ! 1. Thus,
fung is a Cauchy sequence in C. As C is complete, there exists u 2 C such that
un ! u as claimed.
Our next aim is to demonstrate that fxng has the same limit point, that is,

(4.8) xn ! u:

As the metric projection is nonexpansive, using (4.7) and the hypothesis un ! u,
we obtain

kxn � uk � kxn � unk+ kun � uk
= kPCnun � PCnuk+ kun � uk
� kun � uk+ kun � uk ! 0

as n tends to in�nity. This shows that (4.8) holds true as claimed. Consequently,
fxng is bounded. From (4.1), fyng, fzng, and fwng are also bounded. Furthermore,
according to (4.2) and (4.8), we have

(4.9) zn ! u and wn ! u:

As fxng converges, it holds that

(4.10) xn � xn+1 ! 0:

Next, let us show that

(4.11) Xn � xn+1 ! 0:

As xn+1 = PCn+1un+1 2 Cn+1, it follows from the de�nition of Cn+1 that

kXn � xn+1k2(4.12)

� an kyn � xn+1k2 + bn kzn � xn+1k2 + cn kwn � xn+1k2

� an (kyn � xnk+ kxn � xn+1k)2 + bn (kzn � xnk+ kxn � xn+1k)2

+cn (kwn � xnk+ kxn � xn+1k)2 :

From (4.2) and (4.10), we can conclude that Xn�xn+1 ! 0 as stated. From (4.10)
and (4.11), we have xn �Xn ! 0. As fxng is bounded, fXng is also bounded.
Observe that

(4.13) yn � Szn ! 0 and yn � Twn ! 0:

Choose q 2 F (S) \ F (T ) arbitrarily. Using (2.1), (2.5), and (4.1) yields

kXn � qk2

= kan (yn � q) + bn (Szn � q) + cn (Twn � q)k2

= an kyn � qk2 + bn kSzn � qk2 + cn kTwn � qk2

�anbn kyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2

� an kyn � qk2 + bn kzn � qk2 + cn kwn � qk2

�anbn kyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2
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� an kxn � qk2 + bn kxn � qk2 + cn kxn � qk2

�anbn kxyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2

= kxn � qk2

�anbn kyn � Sznk2 � bncn kSzn � Twnk2 � cnan kTwn � ynk2 :

As bncn kSzn � Twnk2 � 0, we have

anbn kyn � Sznk2 + ancn kyn � Twnk2

� kxn � qk2 � kXn � qk2

� (kxn � qk+ kXn � qk) jkxn � qk � kXn � qkj
� (kxn � qk+ kXn � qk) kxn �Xnk :

Recall that fxng and fXng are bounded and xn � Xn ! 0. Thus, we obtain
yn � Szn ! 0 and yn � Twn ! 0 as asserted.
From (4.2) and (4.13), it follows that

(4.14) zn � Szn ! 0 and wn � Twn ! 0:

As S and T satisfy the condition (3.1), from (4.9) and (4.14), we obtain u 2
F (S) \ F (T ).
Our objective is to demonstrate that xn ! bu. From (4.8), it is su¢ cient to show

that
u
�
= lim

n!1
un = lim

n!1
xn

�
= bu �= PF (S)\F (T )u� :

Applying (4.5) for q = bu 2 F (S) \ F (T ), we have ku� unk � ku� buk for all
n 2 N. From (4.7), it holds that ku� uk � ku� buk. As u 2 F (S) \ F (T ) andbu = PF (S)\F (T )u, we obtain u = bu. This concludes the proof. �

Setting yn = zn = wn = xn in Theorem 4.1, we again obtain Corollary 3.1.

5. Remarks

This section provides brief notes regarding the main theorems of this study in
comparison with previous results. Let S : C ! C with F (S) 6= ; and let fzng be a
bounded sequence in C, where C is a nonempty, closed, and convex subset of a real
Hilbert space H. De�ne Zn = 1

n

Pn�1
k=0 S

kzn (2 C). We call a mapping S : C ! C
mean-demiclosed if

(5.1) Znj * u (weak convergence) =) u 2 F (S) :
According to Kondo and Takahashi [21], a nonexpansive mapping is mean-demiclosed;
see also Claim 1 in Kondo [18] or Proposition 2.1 in Kondo [19]. Furthermore, con-
sider the following condition:

(5.2) Znj ! u (strong convergence) =) u 2 F (S) :
A mean-demiclosed mapping (5.1) satis�es the condition (5.2) and therefore, broad
classes of mappings, including nonexpansive mappings, satisfy this condition (5.2);
see Appendix in Kondo [18]. Consider the following setting:

(??) Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let S; T : C ! C be quasi-nonexpansive mappings (2.5) that satisfy the condition
(5.2). Suppose that F (S) \ F (T ) 6= ;. Let fang, fbng, and fcng be sequences
of real numbers in the interval [0; 1] such that an + bn + cn = 1 for all n 2 N,
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limn!1 anbn > 0, and limn!1ancn > 0. Let fung be a sequence in H such that
un ! u (2 H).
The only di¤erence between the settings (?) and (??) is with regard to the

mapping conditions (3.1) and (5.2). The following two theorems are contained in
Kondo [19]:

Theorem 5.1 ([19]). Assume the setting (??). De�ne a sequence fxng in C as
follows:

x1 = x 2 C : given,
C1 = C;

Xn = anyn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn;

Cn+1 = fh 2 Cn : kXn � hk � kxn � hkg ;
xn+1 = PCn+1un+1

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy the
following conditions:

kyn � qk � kxn � qk ; kzn � qk � kxn � qk ; kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N and
(5.3) xn � yn ! 0

as n!1. Then, fxng converges strongly to an element bu 2 F (S) \ F (T ), wherebu = PF (S)\F (T )u.
Theorem 5.2 ([19]). Assume the setting (??). De�ne a sequence fxng in C as
follows:

x1 = x 2 C : given,
C1 = C;

Xn = anyn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn;

Cn+1 =
n
h 2 Cn : kXn � hk2 � an kyn � hk2 + bn kzn � hk2 + cn kwn � hk2

o
;

xn+1 = PCn+1un+1

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy the
following conditions:

kyn � qk � kxn � qk ; kzn � qk � kxn � qk ; kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N and
(5.4) xn � yn ! 0; xn � zn ! 0; xn � wn ! 0

as n!1. Then, fxng converges strongly to an element bu 2 F (S) \ F (T ), wherebu = PF (S)\F (T )u.
First, we compare Theorem 3.1 with 5.1. As can be seen in (3.3) and (5.3), The-

orem 3.1 requires additional assumptions xn � zn ! 0 and xn � wn ! 0, although
it can be established without relying on mean-valued sequences. Furthermore, the
conditions for mappings S and T in Theorem 3.1 di¤er from those in Theorem 5.1.
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For quasi-nonexpansive mappings with (3.1), see Appendix in Kondo [20] and for
quasi-nonexpansive mappings with (5.2), see Appendix in Kondo [18].
Next, we compare Theorem 4.1 with 5.2. In these two theorems, the required

conditions on the sequences fyng, fzng, and fwng are the same as those in Theorem
3.1. For this point, see Remark 5.2 in Kondo [19]. In other words, Theorem 4.1
can be proved without using mean-valued sequences and without any additional
conditions on the sequences fyng, fzng, and fwng. However, the conditions on the
mappings di¤er, as in the cases of Theorems 3.1 and 5.1.

6. Corollary

In this section, we provide a convergence result deduced from Theorem 3.1 to
demonstrate the applicability and e¤ectiveness of the main theorems of this study.

Corollary 6.1. Assume the setting (?). Let f�ng, f�ng, and f�ng be sequences
of real numbers in the interval [0; 1] such that �n + �n + �n = 1 for all n 2 N and
�n ! 1. De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,(6.1)

C1 = C;

yn = �nxn + �nSxn + �nTxn;

Xn = anyn + bnSyn + cnTyn;

Cn+1 = fh 2 Cn : kXn � hk � kxn � hkg ;
xn+1 = PCn+1un+1

for all n 2 N. Then, the sequence fxng converges strongly to an element bu 2
F (S) \ F (T ), where bu = PF (S)\F (T )u.
Proof. From Theorem 3.1, it is su¢ cient to demonstrate that

kyn � qk � kxn � qk for all q 2 F (S) \ F (T ) and n 2 N,
xn � y n ! 0 as n!1:

Before that, we shall verify that (a) Cn is closed and convex, (b) F (S)\F (T ) � Cn
for all n 2 N, and (c) the sequences fxng ; fzng ; fyng ; fXng ; and fCng are properly
de�ned. These parts can be shown in a similar manner to the proof of Theorem
3.1 and thus, we omit them here.
Observe that kyn � qk � kxn � qk. Let q 2 F (S) \ F (T ) and n 2 N. As S and

T are quasi-nonexpansive (2.5), the following holds:

kyn � qk = k�n (xn � q) + �n (Sxn � q) + �n (Txn � q)k
� �n kxn � qk+ �n kSxn � qk+ �n kTxn � qk
� kxn � qk

as asserted.
De�ne un = PCnu 2 Cn. In a similar manner to the proof of Theorem 3.1, we

can show that there exists u 2 C such that un ! u and xn ! u. As fxng is
convergent, it is bounded. Moreover, as S and T are quasi-nonexpansive, fSxng
and fTxng are also bounded. In fact, for q 2 F (S) \ F (T ), it holds that

kSxnk � kSxn � qk+ kqk
� kxn � qk+ kqk
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for all n 2 N. As fxng is bounded, fSxng is also bounded. Similarly, we can verify
that fTxng is also bounded as claimed.
We show that xn � yn ! 0. As �n ! 1, it follows that �n ! 0 and �n ! 0.

Thus, we have

kxn � ynk = kxn � (�nxn + �nSxn + �nTxn)k
= k(1� �n)xn � �nSxn � �nTxnk
� (1� �n) kxnk+ �n kSxnk+ �n kTxnk ! 0

as asserted. The desired result follows from Theorem 3.1. �

Furthermore, the iterative scheme (6.1) can be replaced by

yn = �nxn + �nSxn + �nTxn + �nT
2xn;(6.2)

Xn = anyn + bnSyn + cnTyn;

Cn+1 = fh 2 Cn : kXn � hk � kxn � hkg ;
xn+1 = PCn+1un+1;

where x1 = x 2 C is given and C1 = C. Furthermore, in (6.2), the parameters
�n; �n; �n; �n 2 [0; 1] are required to satisfy �n ! 1. This type of iterative scheme,
which includes the term T 2xn, was utilized by Maruyama et al. [25] to address more
general class of mappings than nonexpansive mappings; see also Kondo [15, 22] and
the articles cited therein. Hence, it is e¤ective for nonexpansive mappings and the
class of mappings discussed in this study.
Apart from the iterative schemes (6.1) in Corollary 6.1 and (6.2), in�nitely many

iterative methods to locate common �xed points of nonlinear mappings are gener-
ated from Theorems 3.1 and 4.1; see also Kondo [17, 18, 19, 20]. As a �nal remark,
we can prove similar results using the CQ method by Nakajo and Takahashi [26].
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