
Ph.D. Thesis

Toward Discovering Causal Relations from
Manufacturing Data: Heteroscedasticity and

Variable Groups

(Date of conferring)
January 2024

Name Genta Kikuchi

supervisor Shohei Shimizu
supervisor Hidetoshi Matsui

Graduate School of Data Science
Department of Data Science

(Doctor Course)
SHIGA UNIVERSITY





To my family



Abstract

Discovering causal relationships between quantities of interest is fundamental in many
scientific disciplines. This thesis focuses on the field of manufacturing, where data-driven
quality improvements are attracting increasing attention because of the more diverse data
accumulated in the wake of Industry 4.0 and digital transformation. Understanding the causal
relations among the various measurements, such as those of product qualities, machine
parameters, and manufacturing environment, is crucial for data-driven quality improvement
activities.

Although controlled experiments are the recommended approach to infer cause–effect
relations, such experiments can be unethical, technically challenging, or too expensive. For
example, manufacturing a set of defective products during mass production is unrealistic, as
it decreases overall equipment effectiveness and might affect subsequent products. Numerous
methods have been developed to estimate causal relationships from observational data, termed
causal discovery, to tackle this issue.

Research that applies causal discovery methods to manufacturing data assumes that the
data exhibit non-linearity, temporal dependencies, or both. However, they overlook a typical
characteristic of manufacturing data, heteroscedasticity, which causes severe problems with
many existing causal discovery methods. Another issue is handling groups of variables; when
multiple measurements take similar values, selecting one of them or aggregating them by
taking an average may impede the estimation performance. Several existing works on causal
discovery address the aforementioned issues individually but not simultaneously.

This thesis addresses the problem of performing causal discovery on non-linear time-
series data with heteroscedastic noise. We introduce an estimation method based on recently
developed continuous optimization-based methods. Then, we extend the work to exploit the
time structure and show that causal relationships can be uniquely recovered from data under
specific assumptions. Furthermore, this thesis considers the problem of estimating causal
relationships among multiple groups of variables where the functional relations are beyond
linear. We propose a novel approach based on algebraic characterization of causal structure
among multiple groups of variables that can be used as a constraint for the optimization
problem on existing continuous optimization-based methods.
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Chapter 1

Introduction

Identifying the underlying causal relations and laws that govern a phenomenon (e.g., human
behavior, economics, and physical phenomenon) is critical in many scientific disciplines
(Spirtes et al., 2000). For instance, in neuroscience, causality among brain recordings is
extracted to understand the complex behavior of brain networks (Smith et al., 2011). In
biomedical and health informatics, inferring causality may facilitate disease diagnosis and
decision-making regarding clinical treatments (Mani and Cooper, 2000; Shen et al., 2020).
In many cases, including business scenarios, the knowledge of causal relations helps develop
policies to control a quantity of interest, such as process control (Li and Shi, 2007), climate
action (Addo et al., 2021), and root-cause analysis (Budhathoki et al., 2022). Therefore, it is
crucial to understand the cause of the outcome and how the outcome changes if the cause is
controlled to a specific value.

Collecting experimental data by performing controlled experiments is widely used to
obtain high-level evidence of causal relationships. Randomized controlled trials (RCT) are
widely used to draw causal inferences (Rubin, 1974). For example, in clinical research,
each patient is randomly assigned to receive a treatment (intervention), and the difference
between the outcomes is measured. In the manufacturing domain, the design of experiments
(DoE) is often performed (Fisher, 1936; Kirk, 2009). For example, possible factors related
to an outcome are examined for each level of factors, and the factorial analysis of variance
is performed to understand the effect of the factors on the outcome. However, performing
controlled experiments is difficult in practice. The experiments may be unethical (e.g., forcing
a person to smoke to measure the effect of smoking), technically difficult (e.g., too many
variables to perform an experiment), or cost-consuming (e.g., producing a large number of
test products to check the causal connection between machine parameter and product failure).
Thus, developing computational methods to infer causal relationships from observational
data and not experimental data is essential.
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Fig. 1.1 Graph representing causal structure between variables of a cutting process. x→ y
represents a causal effect from x to y.

One method to infer causal relations is to leverage the supervised learning techniques of
machine learning, a powerful tool for modeling the dependency between the outcome and
other quantities (Mahesh, 2020). For example, machine learning models (e.g., LightGBM
(Ke et al., 2017)) can be trained to accurately predict an outcome based on a set of explanatory
variables that likely contain the cause of the outcome and then observe the importance of
the variable or use model interpretation techniques, such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017; Lundberg et al., 2020), to gain insights into the relation
between explanatory variables and the outcome. However, they do not necessarily reflect
the causal relationships as they ignore the causal data structure (Frye et al., 2020; Ma and
Tourani, 2020). Furthermore, supervised learning techniques extract statistical dependencies
such as correlations, which are insufficient to infer causal relationships (Pearl, 2009); hence,
they fail to predict the outcome for the data generated after the intervention.

A causal structure among the variables of a cutting process in a manufacturing line is
shown in Figure 1.1 as an example of when correlation is not equivalent to causation. Feed
rate is the distance at which the cutting tool moves during one revolution, cutting time is the
time taken to finish cutting, and surface roughness measures the unevenness of a surface. The
feed rate is directly related to cutting time and surface roughness; hence, there is a correlation
between the feed rate and the other two variables. Additionally, we observe a correlation
between surface roughness and cutting time: if the surface roughness is high, the cutting time
is small. This correlation is called spurious as it is due to the common cause between the
variables, not by the direct causal effect (Pearl, 2009). However, intervening on the surface
roughness (e.g., by changing the cutting tool) does not necessarily change the cutting time.
Therefore, we need a deeper understanding of the underlying causal mechanism to control a
quantity of interest.

This thesis investigates causal discovery, a research field in which the causal structure
among variables is recovered from data (Spirtes et al., 2000). Particularly, we address how to
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learn the causal structure from observational data, which is substantially more accessible
in various applications, as opposed to experimental data. The causal discovery algorithm
inputs observed data (and possibly prior knowledge) and output a graph that represents the
causal structure with variables as vertices and cause–effect relationship as arrows (→) that
can be used to estimate the causal effects. Though estimating causal structure from purely
observational data seems unachievable, causal discovery techniques address this problem by
making assumptions about the data-generating process.

One important approach to infer the causal structure among variables is the constraint-
based approach, which makes and leverages assumptions regarding the conditional indepen-
dence of the data and the underlying graph structure (Spirtes et al., 2000). Constraint-based
methods include well-known techniques such as the Peter–Clark (PC) algorithm and fast
causal inference (FCI) algorithm (Spirtes et al., 2000); these methods are widely applied to
various data types and distributions such as mixed data types (Tsagris et al., 2018), cyclic
relations (Strobl, 2019), and time-series (Runge et al., 2019). However, they cannot uniquely
identify the causal structure as they fail to distinguish causal relationships with the same sets
of conditional independencies. For instance, when distinguishing cause and effect in two vari-
able cases where a conditional independence relationship is unavailable, the constraint-based
approach cannot determine the causal direction.

Another line of research is the score-based approach that maximizes the fitness measure
of a graph for the observed data (Chickering, 2002). Typical methods involve the greedy
equivalence search (GES) (Chickering, 2002), which starts from an empty graph and recur-
sively adds and removes edges until the scoring criterion converges. Criteria such as the
Akaike information criterion (Akaike, 1974) and the Bayesian information criterion (Schwarz,
1978) are used for scoring a graph. However, one needs to assume the data distribution, for
instance, the Gaussian distribution for continuous variables (Chickering, 2020). Despite
additional assumptions for data distribution, GES is limited to identifying a set of graphs that
induce the same sets of conditional independencies as the constraint approach.

Then, the question remains: how can we fully identify the underlying causal structure?
It requires capturing the asymmetries between the observed data of cases where the cause
generates the effect and vice versa. Therefore, we need a framework to mathematically
model the data-generating process and computational methods to exploit the asymmetry
and distinguish the cause and effect. The major framework to represent the data-generating
process is the structural equation modeling (SEM) (Pearl, 2009). However, many classical
methods cannot distinguish the cause and effect, as they often assume that the data follow
the Gaussian distribution (Pearl, 2009; Spirtes et al., 2000).
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Recently, the functional causal model (FCM) approach for causal discovery (Glymour
et al., 2019) has been attracting considerable attention. FCMs leverage SEM to represent
the data-generating process with additional assumptions to the functional class, such as non-
linearity. Thus, it does not assume a specific form of the probability distribution, provided
with an estimation procedure to uniquely identify the causal structure among variables. The
typical model is the linear non-Gaussian acyclic model (LiNGAM), which assumes that
the causal relationship is linear with no cyclic relations, and the data follow non-Gaussian
distributions (Shimizu et al., 2006). Later, various models that relax the assumptions of
LiNGAM were proposed offering data characteristics such as non-linearity (Hoyer et al.,
2008a), cyclic relations (Lacerda et al., 2008), unmeasured variables (Hoyer et al., 2008b),
temporal dependencies (Hyvärinen et al., 2010; Peters et al., 2013), measurement error
(Zhang and Hyvärinen, 2009, 2010), and location-scale noise (Immer et al., 2023; Strobl and
Lasko, 2023; Xu et al., 2022).

Estimation of FCMs is typically done by recursively applying regression and evaluating
the independence between regression residuals and explanatory variables (Peters et al., 2014;
Shimizu et al., 2011; Strobl and Lasko, 2023). This induces combinatorial search space,
exponentially growing with the number of variables. Recently, the combinatorial optimization
problem for searching for the causal structure was converted to a continuous optimization
problem, termed NOTEARS (Zheng et al., 2018). NOTEARS was originally designed for
data with linear relationships and later was extended to nonlinear (Zheng et al., 2020) and
time-series data (Sun et al., 2021). However, the least squares loss used in the optimization is
equivalent to assuming standard Gaussian noise (Cai et al., 2021; Kaiser and Sipos, 2021),
which hinders the estimation when the assumption does not hold. The violation can easily
occur by scaling the variables; this issue is referred to as scale sensitivity, which remains an
open problem (Reisach et al., 2021).

This thesis concentrates on the FCM approach for causal discovery (Glymour et al.,
2019). The major reason is the identifiability of FCMs, where one can fully identify the
underlying causal structure from the observed data using an appropriate estimation method if
the true data-generating process satisfies their assumptions. However, it raises the following
question: Does the model sufficiently represent the characteristics of the real-world data?
The answer depends on the data one is planning to apply.

1.1 Causal Discovery in Manufacturing: Difficulties

This thesis applies causal discovery to the data acquired from a manufacturing process. In
manufacturing, large volumes of data are collected owing to Industry 4.0 (Rüßmann et al.,
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2015; Vaidya et al., 2018) and the digital transformation (Albukhitan, 2020; Stolterman
and Fors, 2004). The accumulated data are used for quality improvement activities, such
as quality analysis (what affects the quality?), quality monitoring (how can we reduce the
variability of the quality?), and process control (how can we maintain quality?) (Köksal et al.,
2011). These activities seek to improve the quality of products and can be enhanced using
causal relations learned from the data (Marazopoulou et al., 2016; Vuković and Thalmann,
2022).

There are various applications of causal discovery methods in manufacturing, such as
quality analysis (Marazopoulou et al., 2016), root-cause analysis (Landman et al., 2014;
Wunderlich and Niggemann, 2017) and process control (Li and Shi, 2007). However, to
the best of our knowledge, although these methods often consider the typical characteristics
of the manufacturing data, such as temporal dependencies and non-linearity, they overlook
heteroscedasticity. Here, heteroscedasticity indicates that another quantity modulates the
variance of a quantity; this phenomenon is a fundamental factor when considering quality
improvements. Well-recognized traditional methods for quality improvements such as Six
Sigma (Brady and Allen, 2006), statistical process control (Montgomery, 2019), and the
Taguchi method (Karna et al., 2012) seek to assess and reduce the variance of quality.
Heteroscedasticity can also be induced by measurement error of sensors, from the uncertainty
related to readings and temperature (meettechniek.info, 2013; Weschler Instruments, 2020).
Nonetheless, existing research on applying causal discovery to manufacturing data does not
consider heteroscedasticity, which hinders the estimation performance of existing causal
discovery methods. Recently, FCM capable of heteroscedasticity has been proposed (Immer
et al., 2023); however, the corresponding estimation method for more than two variables is
not sufficiently studied.

Another concern is handling groups of variables, where multiple variables take similar
values. For example, measurements from the same machine can exhibit high correlation
(Marazopoulou et al., 2016); hence, it is reasonable to aggregate multiple variables in a group.
Typical procedures involve selecting one variable per group (Marazopoulou et al., 2016) or
calculating the sum or average of the measurements in the same group (Scheines and Spirtes,
2008). Despite the reduced computational time by these methods, the performance of causal
discovery methods is hindered due to changes in the conditional dependencies of the data
(Scheines and Spirtes, 2008) or the cancellation of dependence (Wahl et al., 2023). Therefore,
computational methods to infer the causal relations between groups of variables are essential,
though existing FCM-based methods only handle linear relationships (Entner and Hoyer,
2012; Kawahara et al., 2010).
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1.2 Overview of the Thesis

This thesis seeks to develop a causal discovery method for nonlinear time-series data with
heteroscedasticity, considering the issues mentioned earlier. Furthermore, it introduces a
novel approach to estimating causal structure between groups of variables, which is capable
of data beyond linear functional relations.

First, a continuous optimization-based estimation method for nonlinear data with het-
eroscedasticity is proposed. The method estimates the conditional variance and the con-
ditional expectation of each variable using multilayer perceptrons (MLP) to exploit the
heteroscedasticity. We leverage the approximation of the log probability during the optimiza-
tion, which does not assume a specific probability distribution. This bridges the gap between
the continuous optimization-based methods and FCMs, mitigating scale sensitivity as FCMs
do not require assumptions of probability distributions. Next, we propose an FCM capable of
capturing the temporal dependencies and showing that the model is identifiable. In addition,
we propose an estimation method using the convolutional neural network (CNN). Moreover,
a novel approach for estimating the causal structure among groups of variables based on the
optimization constraints is presented. Finally, the proposed and conventional methods are
compared using synthetic and real-world data from a ceramic substrate manufacturing line.

In summary, this thesis introduces an FCM and corresponding estimation method capable
of generating typical characteristics of manufacturing data. This leads to more accurate
causal discovery, accelerating the realization of data-driven quality improvement activities.

The remainder of this thesis is structured as follows. Chapter 2 provides the mathematical
background necessary to understand the subsequent chapters. Chapter 3 introduces how
causality is mathematically defined and how the causal relation is modeled. Common
assumptions regarding causal modeling are also introduced. Chapter 4 describes existing
FCMs relevant to this thesis and the causal discovery method for nonlinear time series data
with heteroscedasticity, which is the first contribution of the original research articles. In
Chapter 5, we present the problem setting and existing works of performing causal discovery
on groups of variables and the second contribution of the original research articles, which
can be applied to data beyond linear relations. After that, a result of a numerical experiment
on real-world data collected from a manufacturing process is described in Chapter 6. Finally,
Chapter 7 concludes the thesis.
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1.3 Publications

This thesis is based on the research presented in the following articles. The contributions
of Articles I and II are presented in Chapters 4 and 5. An overview of model classes and
existing works introduced in Chapters 4 and 5, and the positioning of each article are shown
in Figure 1.2.

Article I Genta Kikuchi. Differentiable Causal Discovery under Heteroscedastic Noise. In
Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual
Event, November 22–26, 2022, Proceedings, Part I, pages 284–295. Springer, 2023.

Article II Genta Kikuchi and Shohei Shimizu. Structure Learning for Group of Variables
with Nonlinear Time-Series Data with Location-Scale Noise, Causal Analysis Work-
shop Series 2023, to be published in the Proceedings of Machine Learning Research
Volume 223.

The idea of estimating the causal relationship among the groups of variables was
suggested by Prof. Shohei Shimizu. The present author formulated and implemented
the method, performed experiments, and drafted the article. Prof. Shohei Shimizu
supported the present author by commenting on several stages of the draft.
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Fig. 1.2 Overview of model classes and relevant works (estimation methods for the corre-
sponding model class) introduced in Chapter 4 and Chapter 5. The positioning of each article
listed in Section 1.3 is also depicted. Equations of the bivariate case X → Y are shown for
brevity.



Chapter 2

Background

This chapter presents the mathematical background to understand subsequent chapters. We
first introduce the necessary principles of probability and statistics. Then, graph terminologies
used to represent causal relationships are summarized.

2.1 Probability and Statistics

We follow the notation of (Spirtes et al., 2000). Given a random variable X , the probability
distribution modeling the stochastic uncertainty of X is given as P(X). Throughout this thesis,
we consider only continuous random variables, where the probability of X is represented
using a probability density function p(). A P-dimensional random variable is represented as
x = (X1,X2, ...,XP)

T , and the joint probability distribution (or joint distribution for short) of
x is denoted as P(x) = P(X1, ...,XP).

Suppose we have two random variables, X and Y . When P(Y ) > 0, we define the
conditional probability distribution of X given Y as

P(X |Y ) = P(X ,Y )
P(Y )

. (2.1)

We can also define the conditional probability distribution of Y given X as

P(Y |X) =
P(X ,Y )

P(X)
. (2.2)

From Equations (2.1) and (2.2), we can write P(X ,Y ) in two ways:

P(X ,Y ) = P(X |Y )P(Y ) = P(Y |X)P(X). (2.3)
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The expectation and variance of X are given as

E [X ] = µX =
∫

∞

−∞

xp(x)dx,

Var [X ] = σ
2
X = E

[
(X−E [X ])2]= E

[
X2]−E [X ]2 .

Using the conditional probability distribution, the conditional expectation and variance are
calculated as

E [X |Y = y] =
∫

∞

−∞

xp(x|y)dx,

Var [X |Y = y] = E
[
(X−E [X |Y ])2|Y

]
= E

[
X2|Y

]
−E [X |Y ]2 .

The covariance of X and Y is

cov [X ,Y ] = E [(X−E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ] ,

and (Pearson) correlation coefficient is defined as

ρX ,Y =
cov [X ,Y ]√

Var [X ]Var [Y ]
,

where the value measures the "linear" correlation between variables. Throughout the thesis,
we call the correlation coefficient as correlation for brevity.

2.1.1 Probability Distributions

Here, we introduce some probability distributions relevant to this thesis. The shape of each
distribution with several parameter settings is depicted in Figure 2.1. The most widely used
probability distribution for continuous variables is the (multivariate) Gaussian distribution,
where the probability density function is defined by

p(X1, ...,XP) = N (x; µµµ,Σ) =
1√

(2π)Pdet(Σ)
exp
(
−1

2
(x−µµµ)T

Σ
−1(x−µµµ)

)
, (2.4)

where µµµ is a mean vector; the expectation for each dimension of x is stored in each element.
Σ is a P×P covariance matrix, with covariance cov

[
Xi,X j

]
in the non-diagonal elements

and variance Var [Xi] in the diagonal elements.
In causal discovery, non-Gaussianity of a probability distribution is important in iden-

tifying causal relationships (Shimizu et al., 2006). One of the non-Gaussian probability
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distributions is the uniform distribution

p(X) = U(X ;a,b) =

 1
b−a if a≤ X ≤ b

0 if X < a or X > b
,

where a and b define the support of the probability distribution. X values in the range [a,b] are
equally likely to occur, showing a flat shape. Another well-known non-Gaussian distribution
is the Laplace distribution:

p(X) = Laplace(X ; µ,b) =
1

2b
exp
(
−|X−µ|

b

)
,

where µ and b are location and scale parameters, respectively. Compared to the Gaussian
distribution, the Laplace distribution shows sharper peaks and heavier tails. The probability
distributions introduced so far are all symmetric. An example of the asymmetric probability
distributions is the Gumbel distribution

p(X) = Gumbel(X ; µ,β ) =
1
β

exp
(
−
(
z+ exp−z)) ,

where z = X−µ

β
, and µ is a location parameter which equal to the mode of the distribution,

and β > 0 is a scale parameter that controls the expectation.
Probability distributions with heavier tails than the Gaussian distribution are called super-

Gaussian distributions. In contrast, probability distributions with more decay of the tail are
called sub-Gaussian distributions. For instance, the Laplace distribution is a super-Gaussian
distribution, and the uniform distribution is a sub-Gaussian distribution (Hyvärinen et al.,
2001).

2.1.2 Statistical Independence

Two random variables X and Y are statistically independent, denoted as X ⊥⊥ Y (Dawid,
1979), if and only if

P(X ,Y ) = P(X)P(Y ). (2.5)

Equation (2.5) is equivalent to Equation (2.3) if P(X |Y ) = P(X) and P(Y |X) = P(Y ). Intu-
itively, this means that the variable X has no information of Y ; thus, observing X does not
benefit estimating Y , and vice versa.
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Fig. 2.1 Probability distributions. (a) The Gaussian distribution, (b) the Laplace distribution,
(c) the uniform distribution, and (d) the Gumbel distribution. Different parameter sets are
shown for each probability distribution.



2.1 Probability and Statistics 13

A conditional independence of random variables X and Y given Z is defined as

X ⊥⊥ Y |Z if and only if P(X ,Y |Z) = P(X |Z)P(Y |Z).

For example, suppose two persons, A and B, independently visit a supermarket simultane-
ously. Let X and Y be events of whether person A and B purchase an ice cream, respectively.
A and B will likely purchase ice creams if the outside temperature is high; hence, X and Y
more or less exhibit dependence. However, given the outside temperature Z, whether one
purchases ice cream cannot be inferred from whether the other purchases it.

If X and Y are independent, we get

E [XY ] = E [X ]E [Y ] ,

cov [X ,Y ] = E [XY ]−E [X ]E [Y ] = E [X ]E [Y ]−E [X ]E [Y ] = 0,

which shows no statistical correlation. However, if X and Y are uncorrelated, it does not mean
that X and Y are independent. An example of non-independent data with no correlation is
shown in Figure 2.2 1. A special case is when the variables follow the multivariate Gaussian
distribution; no correlation is equivalent to independence. Recall the probability distribution
of the multivariate Gaussian distribution given in Equation (2.4). If there is no correlation
between the variables, the non-diagonal elements of the covariance matrix Σ is zero; then,
we can rewrite Equation (2.4) as

p(X1, ...,XP) =
1√

(2π)P ∏
P
i=1 σi

exp

(
−1

2

P

∑
i=1

(Xi−µi)
2

σi

)

=
P

∏
i=1

1√
(2π)Pσi

exp
(
−1

2
(Xi−µi)

2

σi

)
,

where the product of the univariate Gaussian distribution satisfies the Equation (2.5). We
used the term σi as σXi for brevity. However, in practice, real-world data deviates from the
Gaussian distribution; hence, focusing only on the statistical measurements may lead to
mistakes in inferring the relationship between the variables.

1The data is generated with a R package datasauRus (https://github.com/jumpingrivers/datasauRus). The
original data are generated using simulated annealing (Matejka and Fitzmaurice, 2017).
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Fig. 2.2 Data with no statistical correlation, though not independent. They also share nearly
equal average and standard deviation.

Fig. 2.3 Adjacency matrix and corresponding directed graph. The non-zero element of the
adjacency matrix B indicates the graph edges.

2.2 Graphs

Causal discovery uses graphs to represent the causal data structure. This section introduces
some graph terminologies relevant to this thesis.

A graph G is defined by a tuple (VVV ,EEE), where VVV ∈ {V1, ...,VP} is a set of vertices (nodes),
and EEE is a set of edges. An edge is defined by an ordered pair of vertices <Vi,Vj >, written
as Vi→Vj. A sequence of edges, for example Vi→ ...→Vs→ ...→Vj is called a path from
Vi to Vj. A path is called cyclic if it goes through any vertex more than once. Edges consisting
of directed arrows are called directed edges, and paths with directed edges pointing from
the first to the second vertex of every pair along the sequence of vertices are called directed
paths. A directed graph is a graph with only directed edges, and a skeleton of a graph G is a
graph with all directed edges of G replaced with undirected edges Vi–Vj.

A directed graph can be represented by an adjacency matrix B ∈ {0,1}P×P, which is a
binary matrix with connections from Vi to Vj encoded in the (i, j)-th element. An example of
an adjacency matrix and corresponding directed graph is given in Figure 2.3.
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Fig. 2.4 Terminology of the vertices in a DAG. Ancestors, parents, children, and descendants
are the vertices with respect to Y . Furthermore, X1 and X3 are the exogenous vertices and X4
and X7 are the sink.

A directed graph containing no cycles is called a directed acyclic graph (DAG). A child
of a vertex Vi is a vertex that has a direct arrow from Vi. A vertex with a direct arrow to Vi is
called a parent of Vi; we denote a set of parents of Vi as PAi. If there is a directed path from a
vertex to Vi, that vertex is called an ancestor of Vi, and if there is any directed path from Vi,
the vertex is called a descendant of Vi. A vertex that has no parents is called exogenous or a
root, and a vertex that has no children is called a sink.

An example of a DAG with 8 nodes VVV = {Y,X1, ...,X7} is shown in Figure 2.4. With
respect to Y , {X1,X2,X3} are the ancestors, {X2,X3} are the parents, {X5,X6} are the children,
and {X5,X6,X7} are the descendants. Furthermore, {X1,X3} are the exogenous vertices and
{X4,X7} are the sink.

Given a DAG G , we can obtain a topological or causal order of the vertices {V1, ...,VP},
which is a sequence of indices 1, ..,P. For every i = 1, ...,P, Vi precedes Vj in the ordering if
Vi is not a descendant of Vj in G . For example, the causal order of the vertices in the DAG of
Figure 2.3 is (1,2,3,4).





Chapter 3

Causal Modeling

In this chapter, we describe mathematically modeling causal relationships. To explain what
we refer to as causality in this thesis, we start with the potential outcome framework (Neyman,
1923; Rubin, 1974), also referred to as the counterfactual model, a major framework for
describing causation between variables. Next, we introduce causal Bayesian networks (CBN),
the most common framework to mathematically model the causal relationships between
variables. After that, we explain the framework of structural equation models (SEM) that
model the functional relationships between variables. We show that by using the framework
of structural causal models (SCM), also referred to as functional causal models (FCM), which
uses SEMs to describe the data-generating process, we can represent the population-level
causal relationships defined by the potential outcome model. Finally, common assumptions
regarding causal modeling relevant to this thesis are introduced.

3.1 Potential Outcome Framework

How can we say that a variable X has a causal effect on a variable Y ? Intuitively, we can
say that X caused Y if the value of Y changes with changes in X . For example, suppose we
want to know the effect of teaching material in helping students pass the examination. In
this case, X = {0,1} is a binary variable representing whether a student uses the teaching
material (0: did not use, 1: used), and Y = {0,1} is a binary variable representing whether
that student passed the examination (0: did not pass, 1: passed). If the student did not pass
the examination when not using the teaching material (X = 0,Y = 0) and passed when using
the material (X = 1,Y = 1), we can say that the teaching material caused the student to pass
the examination.

More formally, let u be an individual unit (in this case, the student), Y0(u) and Y1(u)
be the value of the outcome Y (result of the examination) when treatment X (usage of the
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teaching material) is 0 and 1, respectively. Then, Y1(u)−Y0(u) is the causal effect of using
the teaching material. In practice, however, if a student uses the teaching materials and takes
the examination, the results when the student does not use the teaching materials, which is
counterfactual, cannot be known. This problem is called the fundamental problem of causal
inference (Holland, 1986).

At the population level, for instance, suppose there are multiple students in a class, and
we want to know the effect of the teaching material for that population. Consider estimating
average treatment effect (ATE), an average of the effect of the teaching material given by

ATE = E [Y1−Y0] .

In this case, we also suffer from the problem as in the individual case: If all students use the
teaching material, observing the counterfactual from the examination results is impossible.
However, if we assign teaching materials randomly (Rubin, 1974) to each student, we can
obtain a causal effect of the teaching material on the population. Suppose we assign teaching
material X(u) to student u. As assignment X is determined randomly, we have X ⊥⊥ Y0,Y1.
Then, the difference between the average of the outcomes is equivalent to ATE.

ˆATE = E [Y1|X = 1]−E [Y0|X = 0]

= E [Y1]−E [Y0]

= E [Y1−Y0]

= ATE.

Note that the potential outcome framework does not explicitly model the data-generating
process. In Section 3.4, we explain that SEMs also can represent population-level causation
through a set of equations (Pearl, 2009).

3.2 Causal Bayesian Networks

Next, we introduce frameworks to model the causal relations. A causal Bayesian network
(CBN) is a framework defined on a directed acyclic graph G = (VVV ,EEE) with random variables
used as the vertices VVV = {X1, ...,XP}; it models the conditional dependence over the variables
(Pearl, 2009). CBN defines the joint probability distribution as a product of conditional
probability distributions.
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Fig. 3.1 A simple example of a causal Bayesian network (CBN), represents a relationship
between the occurrence of the machine trouble, whether maintenance is performed, and the
failure of a product.

Definition 3.1 (Causal Bayesian Networks). A causal Bayesian network of P variables
{X1, ...,XP} defines the joint probability distribution:

P(X1, ...,XP) =
P

∏
j=1

P(X j|PA j), (3.1)

where the joint probability is factorized with the conditional probability distributions.

Equation (3.1) indicates that the variables are mutually independent if conditioned with
their parents. Intuitively, this means that the values of each variable are determined only by
their parents. Formally, parents PA j is the smallest subset of variables VVV \X j that satisfies
the following equation:

P(X j|PA j) = P(X j|VVV \X j).

An example of a CBN is given in Figure 3.1. Machine trouble increases the probability
of performing maintenance and whether the maintenance affects the possibility of producing
a failed product.



20 Causal Modeling

3.3 Structural Equation Models

Another well-known and most important framework for this thesis is SEM. SEMs were first
introduced from genetics and econometrics (Haavelmo, 1943; Wright, 1921). Generally,
CBNs are used for modeling discrete random variables, whereas SEMs are used for modeling
continuous random variables. We consider the definitions of SEM given in (Pearl, 2009) and
follow the notations in (Peters et al., 2014).

Definition 3.2 (Structural Equation Models). SEM of P variables {X1, ...,XP} is a collection
of P equations:

X j = f j(PA j,N j), j = 1, ...,P (3.2)

where N j is a noise term that is mutually independent, and f j is a function that maps the
parents PA j and noise N j to X j.

Equation (3.2) is a non-linear and non-parametric generalization of linear SEMs:

X j = ∑
i ̸= j

b jiXi +N j, j = 1, ...,P (3.3)

where coefficient b ji is a scalar representing a direct effect from Xi to X j; hence, the parents of
X j is Xi having b ji with non-zero values in this setting. Generally, the functional relationship
is not deterministic, which is modeled by noise N j. From Equation (3.3), we obtain

N j = X j−∑
i ̸= j

b jiXi. j = 1, ...,P

When the probability distribution of N j is Pj(N j), the joint distribution over {X1, ...,XP} is

P(X1, ...,XP) =
P

∏
j=1

P(X j|PA j)

=
P

∏
j=1

Pj(N j)

=
P

∏
j=1

Pj

(
X j−∑

i̸= j
b jiXi

)
.

Therefore, if we assume a probability distribution for noise N j, the linear SEM can be seen
as a CBN, with conditional probabilities P(X j|PA j) = Pj

(
X j−∑i ̸= j b jiXi

)
. Generally, Pj is

assumed to be the Gaussian distribution. In particular, a linear SEM with an assumption of
Gaussian noise, we call the linear SEM a linear Gaussian SEM.
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3.4 Describing Causation with Structural Equation Models

This section explains representing population-level causation using SEMs (Pearl, 2009). The
framework using SEMs to represent the data-generating process is called structural causal
models (SCM), also termed as functional causal models (FCM). In the potential outcome
framework, the random assignment of a treatment to a unit is given by X(u). For instance,
X(u) = 1 means that we force the treatment to be 1 independent of other variables; this
manipulation of holding a variable to a certain value is also called intervention. Suppose we
have the following SEM:

X = NX (3.4)

Y = fY (X ,NY ).

We consider intervening on X as a constant X = 1, denoted as the do-operator as do(X = 1).
To represent an intervention on a variable with SEM, we replace Equation (3.4) with the
constant value and obtain a modified set of equations that represent the behavior under the
intervention do(X = 1) (Pearl, 2009):

X = 1

Y = fY (X ,NY ).

Intervening on a variable gives interventional distribution on Y : P(Y |do(X = 1)), induced
by the modified set of equations. Therefore, if the interventional distribution changes
according to X , we can say that X affects Y :

P(Y |do(X = 1)) ̸= P(Y |do(X = 0)).

The difference between the expectation of the interventional distributions can be used to
quantify the causal effect of X on Y (Pearl, 2009), referred to as the average causal effect:

E [Y |do(X = 1)]−E [Y |do(X = 0)] .

Generally, if the causal structure is known, we can identify the average causal effect (Pearl,
2009; Shpitser and Pearl, 2008). However, in most cases, the true causal structure is unknown;
hence, developing mathematical methods to estimate the causal structure from observational
data is essential. The choice of the functional form and the noise distributions are the central
factors to exploit causal relationships from observational data (Peters et al., 2011). In Section
4.1, we introduce some of the structures used in the context of the causal discovery.
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Fig. 3.2 An example of a full time graph for 3-dimensional time-series data.

3.5 Time Series Models

In many cases, variables show temporal dependencies. For instance, temperatures measured
at multiple machine positions can influence the temperatures in the following observations.
To model the time-series data, we consider the case where each observation is collected
in fixed time intervals, and each variable is generated from the past and present variables.
We first explain several graph representations for time-series data and then introduce the
time-series model.

Suppose we have a set of three time-series XXX = {X1,X2,X3}, and let XXX ttt = {X t
1,X

t
2,X

t
3}

be a set of variables for a fixed time t. Then, a graph that represents the full (dynamic)
data-generating structure is called full time graph (Peters et al., 2013) or full time causal
graph (Assaad et al., 2022). Figure 3.2 shows an example of a full time graph of XXX . The past
effects are called lagged effects, and effects on the same time frame are called instantaneous
or contemporaneous effects.

Recovering the full time graph from observational data is difficult as only a single
observation is available for each time frame. Therefore, a common assumption for the time
series is stationarity (Runge, 2020), which states that for a causal relation X t−τ

i → X t
j , the

causal relation X t ′−τ

i → X t ′
j is observed for all t ′ ̸= t. Intuitively, stationarity states that the

conditional independencies among the variables do not change over time.
Assuming stationarity, we simplify the full time graph and obtain a window causal

graph using the variable set from the present time frame t to the maximum lag of the causal
relations as vertices (Assaad et al., 2022). Furthermore, we can create a more simplified
summary causal graph (Assaad et al., 2022), referred to as summary time graph (Peters et al.,
2013), comprising variables in XXX as vertices, by drawing an arrow Xi→ X j if any X t−τ

i → X t
j

exist. Figure 3.3 (a) and (b) depict examples of window causal and summary time graphs,
respectively.
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(a) Window causal graph (b) Summary time graph

Fig. 3.3 Example of window causal and summary time graphs for three-dimensional time-
series data.

A major model for representing multivariate time-series relevant to this thesis is the
structural vector autoregressive model (SVAR) (Lütkepohl, 2005), which includes linear
SEM as a special case.

Definition 3.3 (Structural Vector Autoregressive Model). SVAR with maximum lag L , denoted
as the L-th order SVAR or SVAR(L) of P time-series {X t

1, ...,X
t
P} is defined as

X t
j = ∑

i ̸= j
bt

jiX
t
i +

L

∑
τ=1

P

∑
i=1

bt−τ

ji X t−τ

i +Nt
j, j = 1, ...,P (3.5)

where bt
ji and bt−τ

ji are the connection strengths of instantaneous and lagged effects, re-
spectively, and Nt

j is the noise term, which is mutually independent over j and identi-
cally distributed over t. The instantaneous effects are assumed to be acyclic. By setting
XXX t = (X t

1, ...,X
t
P)

T and NNNt = (Nt
1, ...,N

t
P)

T , Equation (3.5) can be represented in the vector
form:

XXX t = BtXXX t +
L

∑
τ=1

Bt−τXXX t−τ +NNNt ,

where Bt ,Bt−τ are P×P matrix of the connection strengths, where Bt can be permuted to
a strictly lower triangular matrix because of the acyclicity of the instantaneous effects by
simultaneously permuting row and column with the topological order of the variables.

Estimation of SVAR is typically done by maximum likelihood estimation (Lütkepohl,
2005). However, many estimation methods assume Gaussian noise, hence suffer from the
identifiability (Hyvärinen et al., 2010).
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Fig. 3.4 Causal Markov condition. The graph shows that X2 ⊥⊥ X3|X1 and X1 ⊥⊥ X4|X2,X3.

3.6 Common Assumptions for Causal Models

In addition to the functional form and probability distribution, reasonable assumptions
about the data-generating process are required to model the underlying (unknown) causal
relationships from data. Here, we introduce some of the common assumptions of the data-
generating process.

3.6.1 Causal Markov Condition

The causal Bayesian network (Definition 3.1) defines the joint probability distribution as
a product of conditional probability distributions of each variable X j given its parents PA j.
Therefore, we assume that the data-generating process follows this formulation. This is given
by the causal Markov condition, which connects the graphs with the probability distribution
as follows: (Spirtes et al., 2000):

Definition 3.4 (Causal Markov Condition). Let G = (VVV ,EEE) be a graph with vertices VVV =

{X1, ...,XP} inducing a joint probability P(X1, ...,XP) over the vertices. G and P(X1, ...,XP)

satisfy the causal Markov condition if and only if the following condition holds for all W ⊆VVV :

W ⊥⊥VVV \ (Descendants(W )∪Parents(W )) |Parents(W ).

Thus, if the causal Markov condition holds, each variable X j is independent of its non-
descendants VVV \

(
Descendants(X j)∪Parents(X j)

)
given its parents Parents(X j). An example

is given in Figure 3.4.

3.6.2 Causal Minimality Condition

The causal Markov condition states the sufficient condition for conditional independence.
However, it cannot tell whether a pair of variables is dependent even if they are directly
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Fig. 3.5 Example of a graph and its subgraph. If we consider a joint distribution P(X ,Y,Z)
with X ⊥⊥Y,X ⊥⊥ Z, G and P(X ,Y,Z) do not satisfy the causal minimality condition, because
its subgraph G ′ and P(X ,Y,Z) also satisfies the causal Markov condition.

connected in the graph. The causal minimality condition states an additional assumption
regarding conditional dependencies:

Definition 3.5 (Causal Minimality Condition). Let G = (VVV ,EEE) be a graph with vertices VVV =

{X1, ...,XP} inducing a joint probability P(X1, ...,XP) over the vertices. G and P(X1, ...,XP)

satisfy the causal minimality condition if and only if G and P(X1, ...,XP) satisfy the causal
Markov condition, but not for every proper subgraph of G .

Suppose we have a graph G that consists of three vertices {X ,Y,Z} shown in Figure 3.5.
From G , causal Markov condition entails conditional independence relations X ⊥⊥ Z|Y . Then,
assume we have a joint probability P(X ,Y,Z) that shows X ⊥⊥ Y,X ⊥⊥ Z, which satisfies
the causal Markov condition X ⊥⊥ Z|Y . Next, consider graph G ′, which is a subgraph of G

obtained by removing an arrow from X to Y . We can see that P(X ,Y,Z) also satisfies the
causal Markov condition with respect to G ′. Therefore, P(X ,Y,Z) that exhibit X ⊥⊥Y,X ⊥⊥ Z
does not satisfy the causal minimality condition with respect to G .

3.6.3 Faithfulness Condition

When inferring a causal relationship based on conditional independence relationships, it will
be problematic if the conditional independence disappears because of the specific choice of
model parameters (e.g., b ji of the linear SEMs). The faithfulness condition requires that the
conditional independence relationship of the joint probability distribution P(X1, ...,XP) is via
the causal Markov condition:

Definition 3.6 (Faithfulness Condition). Given a graph G = (VVV ,EEE) inducing a joint proba-
bility P(X1, ...,XP) over the vertices VVV = {X1, ...,XP}, G and P(X1, ...,XP) satisfy the faith-
fulness condition, or we say P(X1, ...,XP) is faithful to G if and only if every conditional
independence relationship in P(X1, ...,XP) is entailed by the causal Markov condition.
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Fig. 3.6 Linear SEM which is not faithful to the graph. Coefficients are shown on each arrow.
If the noise terms follow the Gaussian distribution, we observe X ⊥⊥ Z despite the given
causal structure.

An example of a linear SEM that satisfies the causal Markov condition but violates the
faithfulness condition is shown in Figure 3.6. The corresponding linear SEM is

X = NX , (3.6)

Y = X +NY , (3.7)

Z =−X +Y +NZ. (3.8)

Let the independent noise terms NX , NY , and NZ follow the standard Gaussian distribution.
From Equations (3.6)–(3.8), we obtain

Z =−NX +NX +NY +NZ = NY +NZ. (3.9)

From Equations (3.8) and (3.9), we calculate cov [X ,Z] as

cov [X ,Z] = E [XZ]−E [X ]E [Z]

= E [NX NY +NX NZ]−E [NX ]E [NY +NZ]

= E [NX ]E [NY ]+E [NX ]E [NZ]−E [NX ]E [NY ]−E [NX ]E [NZ]

= 0.

As X and Z follow the Gaussian distribution, no correlation is equivalent to the indepen-
dence; therefore, X ⊥⊥ Z. This violates the faithfulness condition because the independence
relationship between X and Z is not due to the causal Markov condition.

3.6.4 Causal Sufficiency

Another concern for inferring the causal structure is the unobserved variable. If an unob-
served variable is a common effect of two or more variables, the variables are confounded
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and exhibit statistical dependency regardless of the true causal relationships. Unobserved
variables that confound observed variables are called latent confounders.

Causal sufficiency requires no latent confounders of the vertices in the population.

Definition 3.7 (Causal Sufficiency). Let G =(VVV ,EEE) be a graph with vertices VVV = {X1, ...,XP}.
VVV is causal sufficient if and only if every common cause of any two or more variables is in VVV .





Chapter 4

Causal Discovery on Nonlinear
Time-Series Data with Heteroscedasticity

In this chapter, we describe the contributions of a series of studies conducted on the original
research Article I and part of Article II that propose a causal discovery method for data with
nonlinearity, temporal dependency, and heteroscedasticity. Before explaining the proposed
method, we first introduce relevant existing works that seek to estimate the underlying causal
structure (Pearl, 2009) from observational data.

Definition 4.1 (Causal Structure). Let XXX be a set of variables. A causal structure of XXX is a
directed acyclic graph (DAG) where each vertice represents a corresponding variable in XXX,
and edges represent the existence of direct functional relationships between the variables.

This thesis uses SEM-based FCM. There are two main components for FCM: First is
the model, which involves the design of the functional relationships and noise probability
distribution, where the central issue is the identifiability of the model; that is, whether the
causal structure can be uniquely recovered from the joint distribution of the observed data.
Second is the corresponding estimation method to learn the functional relationships from the
data. Throughout this thesis, we assume that the causal structure is acyclic, suggesting that
the causal structure can be represented by a DAG.

In Section 4.1, we first introduce existing FCMs relevant to this thesis. Then, we
explain the estimation methods based on continuous optimization in Section 4.2. Section 4.3
describes the proposed estimation method for nonlinear data with heteroscedasticity. After
that, we introduce the proposed FCM and corresponding estimation method that extends
the former work to be capable of temporal dependencies in Section 4.4. Finally, the results
of numerical experiments conducted to assess the effectiveness of the proposed method are
shown in Section 4.5. Other causal discovery methods include the constraint-based methods
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(Spirtes et al., 2000) and score-based methods (Chickering, 2002); however, these methods
are out of the scope of this thesis.

4.1 Functional Causal Models

This section introduces the existing FCMs that exploit causal asymmetries based on the
functional relationship and noise distribution. A sufficient identifiability condition for
bivariate and multivariate cases is given in (Peters et al., 2011) to show that an FCM is
identifiable, where the underlying causal structure can be uniquely recovered from the joint
distribution. Many existing works on FCMs leverage this observation; here, we briefly
introduce the definitions for the identifiable functional model class (IFMOC).

Definition 4.2 (Functional Model Class). Recall the SEMs given in Definition 3.2:

X j = f j(PA j,N j). j = 1, ...,P

An SEM with noise distributions P(N j) is called a functional model, if the noise terms are
mutually independent and the underlying graph is acyclic. Then, consider the following set
of functions:

F ⊂ { f | f : Rm→ R for any 2≤ m≤ P}.

A functional model belongs to a functional model class with function class F (F -FMOC) if
f j ∈F for all j = 1, ...,P and induces joint probability distribution that all the probabilities
are positive.

Definition 4.3 (Bivariate Identifiable Set). Suppose we observe a functional model with two
variables X ,Y with corresponding noise terms NX and NY , and write F|2 := { f | f : R2→R}.
For instance, X = NX and Y = f (X ,NY ). Let B be a set of combinations of functions f ∈F|2
and probability distributions P(X), P(NY ):

B = F|2×PR×PR.

A set B is bivariate identifiable in F when the following condition holds:

if ( f ,P(X),P(NY )) ∈B and Y = f (X ,NY ), NY ⊥⊥ X

then ∄g ∈F|2 : X = g(Y,NX), NX ⊥⊥ Y.
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Hence, we cannot define a function in both directions (X → Y,X ← Y ) that satisfies the
independence of the noise terms (NY ⊥⊥ X ,NX ⊥⊥ Y ). Moreover, the effect must not be
independent of the cause: Y = f (X ,NY )⊥̸⊥ X for all ( f ,P(X),P(NY )) ∈B under NY ⊥⊥ X.

Given the bivariate identifiability of a functional model, by further constraining condi-
tional distributions, the identifiability is also valid for the multivariate case.

Definition 4.4 (Identifiable Functional Model Class). Let B be bivariate identifiable in F ;
consider functional models with P variables:

X j = f j(PA j,N j). j = 1, ...,P

An F -FMOC is called a (B,F )-identifiable functional model class (IFMOC) if for all
j ∈ {1, ...,P}, i ∈ pa( j) and for all xpa( j)\i, we have

f j
(
xpa( j)\i, ·︸︷︷︸

Xi

, ·︸︷︷︸
N j

)
∈F|2,

where pa( j) is an index set of PA j, and the underbraces indicate the input component of f j

for Xi and N j. Additionally, for all sets S with pa( j)\{i} ⊆ S⊆ nd( j)\{i, j}, there exists x∗S
with P(x∗S)> 0 and(

f j
(
xpa( j)\i, ·︸︷︷︸

Xi

, ·︸︷︷︸
N j

)
,P(Xi|XS = x∗S),P(N j)

)
∈B,

where nd( j) is an index set of non-descendants of X j.

One can uniquely recover the underlying causal structure if the data are generated by
IFMOC (Peters et al., 2011). Intuitively, Definition 4.4 requires that when one obtains a
bivariate model by fixing all arguments of the functions f j, except for one parent (Xi), and
noise variable (N j), the bivariate identifiability remains. IFMOC assumes acyclicity of the
causal structure; the noise terms are jointly independent, have positive densities, and imply
causal minimality, which is a weaker assumption compared to faithfulness (Peters et al.,
2011)

The remaining section introduces the relevant FCMs and estimation methods. We start
with the linear non-Gaussian acyclic models (LiNGAM) (Shimizu et al., 2006), an FCM
assuming linear causal relationships and non-Gaussian noise. Then, we describe the additive
noise models (ANM) (Hoyer et al., 2008a) that leverages non-linearity to infer the causal
direction. Next, the location-scale noise models (LSNM) (Immer et al., 2023), which can
handle non-linearity and heteroscedasticity, are explained. Finally, we introduce non-linear
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time-series models with independent noise (TiMINo) (Peters et al., 2013), capable of non-
linearity and temporal dependency.

4.1.1 LiNGAM: Linear Non-Gaussian Acyclic Models

Model Definition

Suppose we observe a set of P variables XXX = {X1, ...,XP} generated from a system, repre-
sented by a directed acyclic graph. Let b ji denote connection strength from Xi to X j, and recall
that the parent set of X j is denoted as PA j, where b ji ̸= 0 if Xi ∈ PA j and b ji = 0 if Xi /∈ PA j.
LiNGAM is a special case of SEM (Equation (3.2)), where each variable X j,( j = 1, ...,P) is
generated from the following equation:

X j = ∑
i∈pa( j)

b jiXi +N j, j = 1, ...,P

where pa( j) is an index set of PA j, and noise term N j is a continuous random variable with
non-Gaussian densities of non-zero variance. N j is assumed to be mutually independent;
thus, there are no latent confounders. It is shown that one can recover true causal order if
data strictly follow the given assumptions (Shimizu et al., 2006).

The principle of the identification of LiNGAM is shown in Figure 4.1. We consider
two variable cases where the true causal direction is X → Y and noise terms are generated
from the uniform distribution. Comparing Figures 4.1 (b) and (d) show that the predictor
and the regression residuals are independent only when regressed in the true direction.
LiNGAM leverages this asymmetry induced by the non-Gaussianity for determining the
causal structure.

Estimation

Estimation for LiNGAM can be performed using the independent component analysis
(Shimizu et al., 2006), called ICA-LiNGAM. Later, an estimation method called DirectLiNGAM
(Shimizu et al., 2011) was proposed to improve the convergence and scale-sensitivity of ICA-
LiNGAM. DirectLiNGAM recursively performs regression and independence tests between
predictor and regression residuals. Let r ji denote residuals obtained when X j is regressed
on Xi. Under the LiNGAM assumption, Xi is exogenous if and only if it is independent
of its residuals r ji for all j ̸= i (Shimizu et al., 2011). After DirectLiNGAM estimates an
exogenous variable, its effect is removed from the remaining graph using ordinary least
squares and repeated until full estimation of the causal order is obtained. Next, regularized
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Fig. 4.1 Role of non-Gaussianity in LiNGAM. (a) Scatter plot and fitted linear regression
model on true causal direction (X → Y ). (b) Predictor and residuals on the true causal
direction. (c) Scatter plot and fitted linear regression model on anti-causal direction (Y → X).
(d) Predictor and residuals on the anti-causal direction. The predictor and residuals are
independent in the true casual direction but not in the anti-causal direction.
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regression such as adaptive lasso (Zou, 2006) is performed on each variable to estimate the
causal strength b ji, using the preceding variables in the causal order as predictors.

Measuring the independence between predictor and regression residuals may increase
computational time. For practical estimation, the likelihood ratio, asymptotically equivalent
to the difference in mutual information, is proposed (Hyvärinen and Smith, 2013), which can
be computed efficiently for the linear case. Let X̃i, X̃ j denote variables Xi,X j standardized
to zero mean and unit variance, respectively. The difference between mutual information is
given by

m(Xi,X j) = I(X̃ j,ri j)− I(X̃i,r ji)

= H(X̃ j)+H
(

ri j

σri j

)
−H(X̃i)−H

(
r ji

σr ji

)
, (4.1)

where σ denotes standard deviation. Causal order is estimated as Xi→ X j and Xi← X j when
m(Xi,X j) is positive and negative, respectively. Entropies H(·) are estimated by maximum
entropy approximation (Hyvärinen, 1998). A collection of mutual information is aggregated
to find an exogenous variable and recover the causal order among multiple variables:

mi =−∑
j

min(0, [MMM]i, j)
2, (4.2)

where MMM is a P×P matrix, with the (i, j) th element [MMM]i, j as m(Xi,X j). A variable that
maximizes mi is chosen as an exogenous variable. The advantage of using Equations (4.1)
and (4.2) is that the difference between mutual information can be computed efficiently with
only one-dimensional entropies when comparing the independencies of the residuals and
predictor.

4.1.2 ANM: Nonlinear Functional Relations

Model Definition

ANM (Hoyer et al., 2008a; Peters et al., 2014) is a special case of SEM, which consists of a
non-linear function and additive noise term. It is defined as a collection of P equations:

X j = f j(PA j)+N j, j = 1, ...,P

where f j is a twice differentiable function, and N j is a mutually independent noise term.
When f j is a linear function, and N j follows non-Gaussian distribution, ANM reduces
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Fig. 4.2 Role of non-linearity in ANM. (a) Scatter plot and fitted linear regression model on
true causal direction (X → Y ). (b) Predictor and residuals on the true causal direction. (c)
Scatter plot and fitted linear regression model on anti-causal direction (Y → X). (d) Predictor
and residuals on the anti-causal direction. As with LiNGAM, the predictor and residuals are
independent if regressed in the true causal direction but not in the anti-causal direction.

to LiNGAM. Assuming additive noise, the causal structure is identifiable from the joint
distribution if

• f j are linear and N j are non-Gaussian noises (Shimizu et al., 2006).

• f j are non-linear (Hoyer et al., 2008a; Peters et al., 2014).

• f j are linear and N j are Gaussian with equal variances (Peters and Bühlmann, 2014).

The principle of identifying ANM is depicted in Figure 4.2. As with LiNGAM, comparing
Figures 4.2 (b) and (d) show that the predictor and regression residuals are independent only
when regressed in the true direction. ANM leverages non-Gaussianity and non-linearity to
determine the causal direction.

Estimation

For non-linear cases, the underlying graph is estimated using regression with a subsequent
independence test (RESIT) algorithm (Mooij et al., 2009; Peters et al., 2014). RESIT
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recursively performs regression and independence tests to estimate the topological order
of variables, starting from the sink. A generalized additive model (Hastie and Tibshirani,
2017) or Gaussian process regression (Williams and Rasmussen, 1995) is used for regression.
In addition, regression by minimizing the dependency between the predictor and residuals
is proposed, which does not assume a specific probability distribution (Mooij et al., 2009).
RESIT can consistently estimate the causal structure if the data follow the assumption and
the perfect independence test is provided. However, unlike that for DirectLiNGAM, the
computational cost for the independence test may be high when the sample size or number
of variables is large.

4.1.3 LSNM: Conditional Variance Modulated by Predictors

Although ANM can represent a wide range of data-generating processes, it fails to determine
the correct causal structure under a typical violation of the model: heteroscedasticity. An
example of heteroscedastic data is depicted in Figure 4.3. The true causal direction is X →Y .
Figure 4.3 (a) shows a non-linear relation between X and Y and heteroscedasticity, where the
value of X modulates the conditional variance of Y . Given the relationship, regressing on the
true causal direction is insufficient: the predictor and residuals are not independent; hence,
the causal direction cannot be determined. Conditional variance between the variables must
be considered to identify the causal direction.

Model Definition

In LSNM or heteroscedastic noise models (HNM) (Immer et al., 2023; Kikuchi, 2023; Strobl
and Lasko, 2023), the scale of the noise term is modulated by other variables. LSNM is
defined as a collection of P equations of the following form:

X j = f j(PA j)+ s j(PA j)N j, j = 1, ...,P

where f j and scaling function s j > 0 can be non-linear. This type of heteroscedasticity
s j(PA j)N j is called multiplicative heteroscedasticity (Harvey, 1976). If s j is a constant
function, LSNM reduces to ANM. LSNM is identifiable in linear, nonlinear, and multivariate
settings (Immer et al., 2023; Strobl and Lasko, 2023; Xu et al., 2022).

Estimation

Generalized root causal inference (GRCI) (Strobl and Lasko, 2023), an estimation method for
LSNM, leverages a similar procedure as RESIT. The core difference is that, after performing
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a regression in which the effect of the variance remains, GRCI regresses out the effect
by performing an additional regression on the conditional variance (more precisely, the
conditional absolute deviation) given the predictor. To constrain the search space, GRCI
first estimates the skeleton of G using the PC-stable algorithm (Colombo et al., 2014),
recursively finds the sink, and obtains the causal order of the variables. Before evaluating
the independence between the residual and predictor, GRCI partials out the effect of PA j

by transforming the regression residuals using their estimated conditional mean absolute
deviation (MAD). GRCI then obtains a unique DAG estimation using the PC-stable algorithm
with conditioning sets restricted to preceding variables, followed by an orientation of directed
edges according to the causal order.

The principle of the identification of LSNM is shown in Figure 4.3. Figures 4.3 (b) and
(c) show that the remaining effect of the variance induced by the predictor is regressed using
the estimated conditional variance.

Other estimation methods involve heteroscedastic noise causal models (HEC) (Xu et al.,
2022), which assume that N j is a standard Gaussian variable and the distributions of X j have
compact support. Causal autoregressive flow (CAREFL) (Khemakhem et al., 2021) models
the scaling functions by es(X), where s represents autoregressive transformations. However,
HEM and CAREFL are only applicable when P = 2.

Although GRCI considerably improves the estimation accuracy of recovering DAG under
HNM, the numerical results indicate substantial performance degradation under a linear
multivariate setting. We suspect that estimating the conditional MAD of regression residuals
with splines is too flexible, making identifying causal direction based on the independence
test unstable in a linear multivariate setting.
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Fig. 4.3 Role of the location-scale noise in LSNM. (a) Scatter plot and fitted linear regression
model on true causal direction (X → Y ). (b) Predictor and the residuals on the true causal
direction. The gray area denotes the conditional standard deviation of the residuals given X .
(c) Predictor and transformed residuals on the true causal direction. The predictor and the
transformed residuals are independent. (d) Scatter plot and fitted linear regression model on
anti-causal direction (Y → X). (e) Predictor and residuals on the anti-causal direction. (f)
Predictor and the transformed residuals on the anti-causal direction. By regressing out the
effect of the variance, GRCI estimates the causal direction by leveraging the independence
test.
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4.1.4 TiMINo: Time-Series with Nonlinear Relations

Previously introduced LiNGAM, ANM, and LSNM assume that the data is independently
and identically distributed (i.i.d.), indicating no temporal dependencies in the data. This
subsection introduces an FCM that represents the time structure.

Model Definition

Let X t = {X t
1,X

t
2, ...,X

t
P} be a set of P time-series. Assuming that the corresponding full time

graph is acyclic, a time-series model with independent noise (TiMINo) (Peters et al., 2013)
with maximum lag L is defined by a collection of P equations:

X t
j = f j

(
PAt

j, ...,PAt−L
j ,Nt

j

)
, j = 1, ...,P (4.3)

where PAt
j ⊆ X t\X t

j denote a set of instantaneous parents of X t
j at present time t and PAt−τ

j ⊆
X t−τ(τ > 1) denote a set of lagged parents, which is a set of variables with a direct connection
from the previous timestep X t−τ

i to X t
j . Nt

j is a noise term that is jointly independent over
j and t and for each j, and identically distributed in t. If L = 0, TiMINo reduces to ANM.
TiMINo has been shown to be identifiable in the following cases (Peters et al., 2013):

1. Equation (4.3) consists of IFMOC. In this case, the corresponding summary time graph
can contain cycles.

2. PAt
j contains at least one X t−τ

j (There is temporal dependency on each X t
j), and the

joint distribution is faithful w.r.t the underlying full time graph. In this case, the
corresponding summary time graph must be acyclic. Thus, even when the functions
and noises are not IFMOC (e.g., linear function and Gaussian noise), we can recover
the causal structure using temporal dependencies.

From the latter, we can see that even when the functions and noises are not IFMOC
(e.g. linear function and Gaussian noise), we can recover the causal structure using temporal
dependencies.

Estimation

Estimation of TiMINo is done similarly to RESIT (Mooij et al., 2009; Peters et al., 2014),
recursively searching a sink by performing regression and measuring independence between
predictors and regression residuals. If TiMINo cannot find a sink that shows independence, it
stops the iteration and returns the causal order identified so far.
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4.2 Structure Learning with Continuous Optimization

The estimation methods for FCMs introduced in previous sections involve combinatorial
optimization, in which the search grows exponentially with the number of variables. This
section introduces continuous optimization based structure learning methods, a framework
for score-based learning of CBNs/SEMs to perform estimations with a continuous optimiza-
tion problem. For instance, given a dataset X = [x1|...|xP] ∈ RN×P of P variables and N
observations, many of the existing score-based structure learning methods seek to obtain a
graph G that minimizes a certain score function Q(G ;X) : G→ R (e.g., Akaike information
criterion (AIC) (Akaike, 1974)) over the set of DAGs G:

min
G

Q(G ;X) s.t. G ∈ DAGs,

where the optimization is formulated as a combinatorial optimization problem. Conversely,
continuous optimization-based methods convert the problem to a continuous optimization
problem:

min
W

F(W ;X) s.t. h(W ) = 0, (4.4)

where W is a P×P (weighted) adjacency matrix corresponding to G , and h(W ) = 0 is an
algebraic constraint that equals to zero if and only if W corresponds to DAG. A common
score function for linear SEM is the squared loss function F(W ;X) = ∥X−XW∥2

F , where
∥ · ∥F is the Frobenius norm.

We start with the NOTEARS (Zheng et al., 2018) that gives an algebraic characterization
of DAGs and formulates the structure learning problem as a continuous optimization problem.
Then, we introduce NOTEARS-MLP (Zheng et al., 2020), which is an extension to the
non-linear case using MLP, and finally explain the NTS-NOTEARS (Sun et al., 2021) that
leverages CNN to exploit non-linear functional relations and temporal dependencies.

4.2.1 NOTEARS: Linear Relations

To formulate the algebraic constraint h(W ) = 0, which is also referred to as the acyclicity
constraint, Zheng et al. (2018) proposed using the trace of a matrix exponential, and provided
the following theorem:

Theorem 4.5. Let a matrix W ∈ RP×P be a weighted adjacency matrix corresponding to a
graph G . G is a DAG if and only if:

h(W ) = tr
(
eW◦W)−P = 0, (4.5)
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where ◦ is the elementwise product, and eA is the matrix exponential of A.

For simplicity, consider a binary adjacency matrix B = {0,1}P×P. A trace of an adjacency
matrix tr(Bk) = ∑

P
j=1[B

k] j, j shows the number of closed walks of length k. Therefore, B has

no cycles if and only if ∑
∞
k=1 ∑

P
j=1[B

k] j, j = 0. Using the matrix exponential eB = ∑
∞
k=0

Bk

k! ,
we get

tr
(
eB)= ∞

∑
k=0

P

∑
j=1

[Bk] j, j

k!

=
tr(I)

0!
+

∞

∑
k=1

P

∑
j=1

[Bk] j, j

k!

= P+
∞

∑
k=1

P

∑
j=1

[Bk] j, j

k!
. (4.6)

From Equation (4.6), we can see that B is acyclic if and only if

∞

∑
k=1

P

∑
j=1

[Bk] j, j

k!
= tr

(
eB)−P = 0. (4.7)

As Equation (4.7) is valid for nonnegative matrix, it can be extended to the weighted adjacency
matrix using the Hadamard product as in Equation (4.5) (Zheng et al., 2018). Moreover,
Equation (4.5) satisfies the following desirable properties regarding optimization (Zheng
et al., 2018):

1. The values of h quantify the "DAG-ness" of the graph (h(W )> h(W
′
) indicates that W

has more cycles than W
′
or the cycles in W are more weighted than in W

′
);

2. h is smooth, and its derivatives can be computed easily (∇h(W ) =
(
eW◦W)T ◦2W ).

Using Equation (4.5) as a constraint, Zheng et al. (2018) formulated a structure-learning
problem as a continuous optimization problem and proposed an estimation algorithm for
linear data (NOTEARS). Let X = [x1|...|xP] ∈ RN×P be a dataset comprising N independent
and identically distributed (i.i.d.) observations. NOTEARS solves the following constrained
optimization problem:

min
W

1
2N
∥X−XW∥2

F +λ∥W∥1 subject to h(W ) = 0,

where ∥ · ∥F is the Frobenius norm, ∥ · ∥1 = ∥vec(·)∥1 is the vector L1-norm and λ denotes
the penalty factor. The constrained optimization problem is converted into an unconstrained
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optimization problem using the augmented Lagrangian method, followed by optimization
using L-BFGS (Byrd et al., 1995).

NOTEARS and its extension generally leverage squared loss, and it has been seen that
this is equivalent to assuming standard Gaussian noise; the estimation is hindered when the
assumption does not hold (Cai et al., 2021). The violation of the assumption can easily occur
by scaling the variables (Kaiser and Sipos, 2021; Reisach et al., 2021), often referred to as
scale sensitivity.

4.2.2 NOTEARS-MLP: Nonlinear Relations

NOTEARS was later extended to non-linear functional relationships using MLP, named
NOTEARS-MLP (Zheng et al., 2020). Consider an MLP that consists of h hidden layers
with ml hidden units in each layer and an activation function σ , given by

MLP(X;A(1)
j , ...,A(h+1)

j ) = A(h+1)
σ(· · ·A(2)

σ(A(1)(X)),

where A(l) ∈Rml×ml−1 is a connectivity matrix with m0 = P,mh+1 = 1. The sigmoid function
is often used for the activation functions σ . Let θ j = {A(1)

j , ...,A(h+1)
j } be parameters of the

j-th MLP to predict E
[
X j|PA j

]
. Thus, P MLPs are fitted in total. Estimation of NOTEARS-

MLP is formulated by the following optimization problem:

min
θ

1
N

P

∑
j=1

ℓ
(
x j,MLP(X;θ j)

)
+λ∥A(1)

j ∥1 s.t. h(W (θ)) = 0,

where θ = (θ1, ...,θP), and ℓ denotes the loss function, which the squared loss is typically
used. A weighted adjacency for W (θ) for NOTEARS-MLP is calculated based on the first
layer of each MLP by

[W (θ)]k j = ∥[A
(1)
j ]·,k∥2,

where [W (θ)]k, j = 0 if MLP(X,θk) is independent of X j.

4.2.3 NTS-NOTEARS: Nonlinear Relations with Temporal Dependen-
cies

NOTEARS and NOTEARS-MLP assume i.i.d. data, that is, there is no time structure.
NOTEARS for nonparametric temporal DAGs (NTS-NOTEARS) (Sun et al., 2021) effec-
tively captures temporal dependency using CNN.
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Recall the notation for time-series introduced on TiMINo (4.3), where X t = {X t
1,X

t
2, ...,X

t
P}

is a set of P time-series. NTS-NOTEARS exploits the temporal dependencies by fitting
CNNs to each X t

j , where the first layer of each CNN is a convolutional layer with kernel
size S, a stride of 1, and no padding; the parameters are expressed as φ j, which is a set of
weight matrices of shape P× (L+1). The corresponding weight of φ j with respect to the
target variable of the instantaneous step is set to zero to avoid estimating X t

j using its own
value. The remaining layers are fully connected layers with parameter ψ j, which is a set
of weight matrices. Therefore, parameters of NTS-NOTEARS is given by θ = (θ1, ...,θP),
where θ j = (φ j,ψ j).

Given N i.i.d. observations Xt = {xt,(n)}N
n=1, NTS-NOTEARS estimates using the fol-

lowing optimization problem:

min
θ

F(Xt ,θ) subject to h(W (θ)) = tr
(

eW (θ)◦W (θ)
)
−P = 0,

where

F(Xt ,θ) =
1

N−L

N

∑
n=L+1

P

∑
j=1

ℓ
(

xt:t−L,(n)
j ,CNN(xt:t−L,(n);θ j)

)
+

L

∑
τ=0

λ
L−τ

1 ∥φ (L−τ)
j ∥1 +

1
2

λ2∥θ j∥2
2.

Here, λ1 = (λ 0, ...,λ L) and λ2 are regularization parameters. φ
(L)
j denotes a collection of the

last column of the S convolutional kernels, corresponding to the weights of the instantaneous
step. ℓ denotes the loss function, which squared loss is used for NTS-NOTEARS. As
NTS-NOTEARS models temporal dependencies, the weighted adjacency matrix for the
instantaneous step and lagged effects can be obtained:

[W τ(θ)]i, j = ∥i-th element across all φ j(τ)∥2,

where [W τ(θ)]i, j represents the connection strength between X t−τ

i to X t
j . Therefore, constrain-

ing acyclicity is only necessary for the instantaneous step (τ = 0) and W 0(θ) is sufficient for
the weighted adjacency matrix of NTS-NOTEARS (Sun et al., 2021).

4.3 Estimation of LSNM with Continuous Optimization

This section describes the contribution of Article I (Differentiable Causal Discovery under
Heteroscedastic Noise), which focuses on developing a continuous optimization-based
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estimation method for LSNM (Section 4.1.3):

X j = f j(PA j)+ s j(PA j)N j. j = 1, ...,P

The major aspects that differentiate our estimation method from existing methods are as
follows:

1. We model the conditional expectation of each variable and conditional variance to
model the induced variance by the predictors.

2. We leverage approximation using log probability during optimization without assum-
ing a specific probability distribution for the noise term, as opposed to the existing
continuous optimization-based methods that implicitly assume standard Gaussian
noise.

Here, we describe the proposed method given in Article I. Let p j denote the probability
density function of Ñ j := s j(PA j)N j = X j− f j(PA j) and (σ j)

2 be the conditional variance
of Ñ j given PA j. Then, we can write the probability density function of Ñ j standardized to
unit variance by

p̃ j

(
Ñ j

σ j

)
= σ j p j

(
Ñ j

σ j

)
. (4.8)

Using Equation (4.8), given N i.i.d. observations X = {x(n)}N
n=1, the log-likelihood of LSNM

is defined as follows:

logL (X) =
1
N

log
N

∏
n=1

P

∏
j=1

p j

Ñ(n)
j

σ
(n)
j


=

1
N

N

∑
n=1

P

∑
j=1

log
1

σ
(n)
j

p̃ j

Ñ(n)
j

σ
(n)
j


=− 1

N

N

∑
n=1

P

∑
j=1

logσ
(n)
j +

1
N

N

∑
n=1

P

∑
j=1

log p̃ j

x(n)j − f j(PA(n)
j )

σ
(n)
j

 , (4.9)

where (σ
(n)
j )2 represents the conditional variance of the n-th sample before standardization.

Using the same approach of NOTEARS-MLP (Section 4.2.2), we adopt MLP with parameter
set θ A

j to model f j(PA(n)
j ), and MLP with parameter set θC

j to model σ
(n)
j for each j, resulting

in 2P MLPs. Therefore, unlike NOTEARS-MLP, we obtain weighted adjacency matrices,
representing the connection strength of conditional expectations and variances. Following
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Equation (4.5), an acyclicity constraint for our approach is given by

h(W (θ A),W (θC)) = tr
(

eW (θ A)◦W (θ A)+W (θC)◦W (θC)
)
−P = 0, (4.10)

where θ A = (θ A
1 , ...,θ

A
P ) and θC = (θC

1 , ...,θ
C
P ).

Many existing continuous optimization-based methods leverage square loss for the loss
function, assuming that the noise terms follow standard Gaussian noise (Cai et al., 2021;
Reisach et al., 2021). However, the noise distributions are unknown in practice and exhibit
non-Gaussianity. Therefore, we use the estimation method of approximating log-probability
log p̃ j, in which we choose the approximation function from the two candidates according to
whether the variable is super-Gaussian or sub-Gaussian (Hyvärinen and Oja, 1998; Hyvärinen
et al., 2001). During optimization, log p̃ j is determined as follows:

log p̃ j(z) =

−2logcosh(z) if γ j > 0,

−
(
z2/2− logcosh(z)

)
else

, (4.11)

where scaler γ j is calculated by

γ j = E
[
− tanh(z)z+(1− tanh(z)2)

]
. (4.12)

γ j is positive if z is super-Gaussian and negative if z is sub-Gaussian. We expect that the
approximated log p̃ j improves the estimation performance compared to the squared loss
function when the noise distribution is not Gaussian. Although the approximation assumes
non-Gaussian noise distribution and symmetric probability density functions, the results of
the numerical experiments indicate that a relatively high estimation accuracy can be obtained
even when the noise terms follow a Gaussian or Gumbel distribution.

Using the (negative of the) log-likelihood (4.9) and the acyclicity constraint (4.10), the
optimization problem for our method is given by

min
θ A,θC

F(Xt ,θ A,θC) subject to h(W (θ A),W (θC)) = 0, (4.13)
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where

F(Xt ,θ A,θC) =
1
N

N

∑
n=1

P

∑
j=1

logMLP(x(n);θ
C
j )−

1
N

N

∑
n=1

P

∑
j=1

log p̃ j

x(n)j −MLP(x(n);θ A
j )

MLP(x(n);θC
j )


+

P

∑
j=1

(
λ1∥A

(1)
j ∥1 +λ2∥C

(1)
j ∥1

)
.

λ1 and λ2 are regularization parameters, and A(1)
j and C(1)

j denote the weight matrices of the
first layer of the MLP for predicting conditional expectation and variance, respectively.

Following NOTEARS, the constrained optimization problem (4.13) is converted to
an unconstrained optimization problem using the augmented Lagrangian method. After
optimization using L-BFGS (Byrd et al., 1995), we estimate the weighted adjacency matrix
as W̃ (θ A,θC) = 1/2(W (θ A)+W (θC)) and round off the small values to zero with a small
threshold w > 0 to remove redundant edges and remaining cycles in the graph (Zhou, 2009).

4.4 TS-LSNM: An Extension to Time-Series

Article II (Structure Learning for Group of Variables with Nonlinear Time-Series Data with
Location-Scale Noise) generalizes the work on Article I to be capable of capturing temporal
dependencies and provide a novel approach for learning causal structure among groups of
variables with a continuous optimization-based approach. We first propose a new FCM that
extends LSNM (Section 4.1.3) to time series, which is a special case of TiMINo (Section
4.1.4) and show that the proposed model is structurally identifiable under some assumptions.
Then, we provide a corresponding estimation method leveraging the same approach as
NTS-NOTEARS (Section 4.2.3).

4.4.1 Model Definition

We first define a novel FCM: time-series location-scale noise model (TS-LSNM).

Definition 4.6 (Time-Series Location-Scale Noise Model). Let X t = {X t
1,X

t
2, ...,X

t
P} be a set

of P time series, and assume that the corresponding full time graph is acyclic. A time-series
location-scale noise model (TS-LSNM) with maximum lag L≥ 0 is defined by a collection of
P equations:

X t
j = f j

(
PAt

j, ...,PAt−L
j

)
+ s j

(
PAt

j, ...,PAt−L
j

)
Nt

j, j = 1, ...,P (4.14)
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where PAt
j ⊆ X t\X t

j denote a set of instantaneous parents of X t
j at time t and PAt−τ

j ⊆
X t−τ (τ > 0) denote a set of lagged parents, which is a set of variables with a direct
connection from the previous time step to X t

j (e.g. X t−τ

i to X t
j). Nt

j is a noise term that is
mutually independent over j and t, and identically distributed in t. f j and scaling function
s j > 0 are at least twice differentiable functions. Additionally, we assume causal stationarity
(Runge, 2018) and causal minimality (Peters et al., 2011; Spirtes et al., 2000); we also
assume that the joint distribution of X t satisfies the causal Markov property with respect to
the underlying graph.

TS-LSNM is a special case of TiMINo (Section 4.1.4), in particular, if no temporal
dependency is assumed (L = 0), TS-LSNM is reduced to LSNM (Section 4.1.3).

4.4.2 Structural Identifiability

The structural identifiability of TS-LSNM comes from the identifiability results of LSNM
and TiMINo. Note that there are some exceptions, that TS-LSNM, as well as LSNM, is not
identifiable in some pathological cases (e.g., linear Gaussian with constant function s j and
no temporal dependency) (Immer et al., 2023; Strobl and Lasko, 2023).

Corollary 4.7 (Structural identifiability of TS-LSNM). TS-LSNM given in Definition 4.6 is
structurally identifiable from the joint distribution.

Proof. As LSNM belongs to an IFMOC (Definition 4.4), it is structurally identifiable under
the assumption of causal minimality, no cycles and no latent confounders (Strobl and Lasko,
2023). Because we can recover the underlying graph of TiMINo if the data-generating func-
tions come from the IFMOC (Peters et al., 2013), TS-LSNM is also structurally identifiable
from the joint distribution.

The main advantage of handling various characteristics of the data is that we can use
as much available information as possible. For instance, for the linear Gaussian data we
may capture the heteroscedasticity to determine the causal direction, and even for the linear
Gaussian data without heteroscedasticity, we might able to exploit the temporal dependencies
to infer causal structure.

4.4.3 Estimation Algorithm

In this subsection, we briefly describe the estimation method for TS-LSNM. Set P̃A j =

∪L
τ=0PAt−τ

j and Ñt
j := s j(P̃A j)Nt

j. Given N observations Xt = {xt,(n)}N
n=1, log-likelihood of
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TS-LSNM (4.14) is calculated as follows:

logL (Xt) =− 1
N−L

N

∑
n=L+1

P

∑
j=1

logσ
t,(n)
j +

1
N−L

N

∑
n=L+1

P

∑
j=1

log p̃ j

xt,(n)
j − f j(P̃A(n)

j )

σ
t,(n)
j

 ,

(4.15)
where p̃ j denotes the probability density functions of noise Ñt

j standardized to unit variance

and (σ
t,(n)
j )2 represents the conditional variance of the n-th sample before standardization.

We adopt the same approach as NTS-NOTEARS (Section 4.2.3), which leverages CNNs
to capture temporal dependencies and model each variable’s conditional expectation and
variance separately for heteroscedasticity, as presented in the previous section. Therefore,
we create two CNNs to estimate f j(P̃A(n)

j ) and σ
t,(n)
j for each target variable, resulting

in 2P CNNs. The estimations f̂ j(P̃A(n)
j ) and σ̂

t,(n)
j are given by CNNs with parameters

θ A
j = (φ A

j ,ψ
A
j ) and θC

j = (φC
j ,ψ

C
j ), respectively:

f̂ j(P̃A(n)
j ) = CNN(xt:t−L,(n);θ

A
j ),

σ̂
t,(n)
j = CNN(xt:t−L,(n);θ

C
j ),

where φ and ψ denote the parameter of the convolutional layer and fully connected layers,
respectively. Figure 4.4 illustrates how CNNs capture time structure and heteroscedasticity
and obtain f j(P̃A(n)

j ) and σ
t,(n)
j . When L = 0, CNN(xt:t−L,(n);θ A

j ) and CNN(xt:t−L,(n);θC
j )

with kernel size S can be represented by MLP(x(n);θ A
j ) and MLP(x(n);θC

j ) with S nodes on
the first hidden layer, respectively.

Following NTS-NOTEARS, the weighted adjacency matrix for TS-LSNM is calculated
using the weights of the convolutional layers of CNNs. We calculate two weighted adja-
cency matrices W τ(θ A) and W τ(θC) for each time lag τ , representing the overall connection
strengths with respect to the conditional expectations and variances, respectively. To ob-
tain a weighted adjacency matrix W τ(θ A,θC) that represents the connection strengths of
the conditional expectation and variance, we calculate W τ(θ A,θC) = W τ(θ A)+W τ(θC),
where element i, j of W τ(θ A,θC) indicates the overall connection strength from X t−τ

i to X t
j .

W 0(θ A,θC) represents the dependency structure of the current time step t.
Finally, using the log-likelihood (4.15) with acyclicity constraint (4.5) and regularization

terms with respect to the model weights θ A = (θ A
1 , ...,θ

A
P ) and θC = (θC

1 , ...,θ
C
P ), we obtain

the following constrained optimization problem for TS-LSNM:

min
θ A,θC

F(Xt ,θ A,θC) subject to h(W 0(θ A,θC)) = 0, (4.16)
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Fig. 4.4 Schematic of how CNNs are used to capture time structure and heteroscedasticity

where

F(Xt ,θ A,θC) =
1

N−L

N

∑
n=L+1

P

∑
j=1

logCNN(xt:t−L,(n);θ
C
j )

− 1
N−L

N

∑
n=L+1

P

∑
j=1

log p̃ j

xt:t−L,(n)
j −CNN(xt:t−L,(n);θ A

j )

CNN(xt:t−L,(n);θC
j )


+

P

∑
j=1

(
λ1∥φ A

j ∥1 +λ1∥φC
j ∥1 +

1
2

λ2∥θ A
j ∥2

2 +
1
2

λ2∥θC
j ∥2

2

)
.

Here, λ1 and λ2 are regularization parameters, and log p̃ j is calculated using the approxima-
tion of the log probability (4.11). Following previous works, the constrained optimization
problem (4.16) is converted to an unconstrained optimization problem using the augmented
Lagrangian method. L-BFGS is used for optimization, followed by a post-processing step
that rounds off the small values of W τ(θ A,θC) to zero with a small threshold w > 0 for each
τ .

4.5 Numerical Experiments

In this section, we report the results of numerical experiments on synthetic data conducted to
assess the performance of TS-LSNM. We first present the results on data with no temporal
dependencies in Section 4.5.1. Then, we show the results on time-series data in Section 4.5.2.
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4.5.1 Linear/Nonlinear Data with no Temporal Dependencies

Here, we present the results on data with heteroscedasticity for linear cases and nonlinear
cases, but with no temporal dependencies. Baseline algorithms selected for comparison are
NOTEARS (Zheng et al., 2018) and DirectLiNGAM (Shimizu et al., 2011) for the linear
cases, and NOTEARS-MLP (Zheng et al., 2020), RESIT (Peters et al., 2014) and GRCI
(Strobl and Lasko, 2023) for the non-linear cases. We also included the performance of the
empty graph as a naive baseline. DirectLiNGAM and RESIT are included to investigate
the performance of the independence-based estimation algorithms, which do not assume
heteroscedasticity. For each algorithm, we used the parameter set defined in the corresponding
study and codes.

Setup

In the experiments, ground truth DAGs were generated from Erdös-Rényi model with 2P
edges (ER2). For the linear cases, each variable was generated by

X j = ∑
i∈pa( j)

[W ]i, jXi + s j(PA j)N j,

where pa( j) denotes the index set of PA j. For the non-linear cases, we used index models

X t
j = tanh

(
f (1)j (PA j)

)
+ cos

(
f (2)j (PA j)

)
+ sin

(
f (3)j (PA j)

)
+ s j

(
PA j
)

Nt
j, (4.17)

where

f (w)j = ∑
i∈pa( j)

[W (w)]i, jXi. w = 1,2,3

For the scaling function, we used s j(PA j) = exp(∑i∈pa( j)[C]i, jXi), and noise terms were gen-
erated from Nt

j ∼ U(−1/
√

3,1/
√

3). Each non zero element of P×P weight matrix W and
C were drawn randomly from [W ]i, j ∼ ±U(0.5,2.0) and [C]i, j ∼ ±U(0.4,0.8), respectively.
All variables were scaled to zero mean and unit variance. Each experiment ran 10 times, and
structural Hamming distance (lower the better) was used as an evaluation metric.

We introduced an existence ratio of heteroscedasticity Rh, which controls how often
heteroscedasticity occurs in the generated data. We first generated a binary matrix B ∈
{0,1}P×P from ER2 graph, and then randomly selected each non-zero element of B with
probability Rh and obtained a binary matrix B̃. For example, if Rh = 0 we get B̃ with all
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(b) Nonlinear case

Fig. 4.5 Result on changing existence ratio of heteroscedasticity Rh

zeros, and if Rh = 1.0, we get B̃ = B. Thereafter, we generated each element of W and C
according to B and B̃, respectively.

We used for TS-LSNM the same parameter settings as for NOTEARS and NOTEARS-
MLP, where λ1 = 0.01, λ2 = 0.01, w = 0.3, and sigmoid function was used for the activation
function on the hidden layer. The maximum time lag was set to L = 0, which means that we
did not estimate temporal dependencies in this experiment. MLP with no hidden layer on the
linear cases and one hidden layer with 10 nodes on non-linear cases was used for modeling
the conditional expectations, and MLP with one hidden layer with 10 nodes for both linear
and non-linear cases for the conditional variances. The exponential activation function was
applied to the output of conditional variances to ensure positivity. To improve convergence,
we initialized the weights of TS-LSNM with the fitted result of NOTEARS on the linear
cases and NOTEARS-MLP on the non-linear cases.

Results

We first conducted an experiment with different existence ratios of heteroscedasticity Rh. We
changed Rh = {0,0.2,0.5,0.8,1.0} with number of variables P = 10, sample size N = 1000
for the linear case and N = 2000 for the non-linear case. The results are given in Figure 4.5.
As Rh increases, TS-LSNM generally outperformed the others. TS-LSNM outperformed
NOTEARS and NOTEARS-MLP under no heteroscedasticity (Rh = 0). This verifies the
effect of using log-likelihood with variance estimation as an objective function, compared to
the squared loss function, which is equivalent to the standard Gaussian noise assumption.
GRCI matched TS-LSNM in the non-linear case, although its performance degraded in the
linear case. DirectLiNGAM and RESIT did not perform well even in small Rh.
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Fig. 4.6 Result on changing sample size N
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Fig. 4.7 Result on changing number of variables P

Then, to evaluate the estimation performance under different sample sizes, we set Rh =

0.5, P = 10 and changed N = {50,100,200,400, ...,1000} for the linear case and N =

{50,100,200,500,1000,2000,3000} for the non-linear case. As shown in Figure 4.6, TS-
LSNM generally outperformed others in different sample sizes. In this setting, TS-LSNM
needed at least N = 200 in the linear case and N = 1000 for the non-linear case, thanks
to the initialization using fitted NOTEARS and NOTEARS-MLP. From Figure 4.6a, the
performance of GRCI on the linear case gradually decreases from N > 400, which implies
that there is a case that GRCI converges to the wrong solution with large sample size.

Finally, to investigate the change of estimation performance under different number of
variables, we set Rh = 0.5 and changed P = {5,10,15,20,25} with N = 1000 for the linear
case and N = 2000 for the non-linear case. As shown in Figure 4.7, TS-LSNM considerably
outperformed the others. In Figure 4.7b, GRCI outperformed TS-TS-LSNM only in the
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non-linear case with a small number of variables P = 5. TS-LSNM performed better on
p > 5 compared to GRCI and the difference in performance got larger as P increased. This
is likely to be the effect of the GRCI estimation procedure, which recursively finds sink
nodes, where mistakes that occurred in the preceding iterations propagate through the whole
procedure. TS-LSNM does not have that property, which is an advantage of continuous
optimization-based methods.
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4.5.2 Nonlinear Time-Series Data with Location-Scale Noise

In this section, we show the results of numerical experiments on non-linear time-series data
with heteroscedasticity. We compared TS-LSNM with NTS-NOTEARS (Sun et al., 2021),
which can capture non-linearity as well as temporal dependency, though does not model
heteroscedasticity.

Setup

In this experiment, ground truth DAGs were generated from Erdös-Rényi model with 2P
edges (ER2). For the time-lagged effects, following (Sun et al., 2021), we created a connec-
tion from X t−τ

i to X t
j with a probability of 1/P, which indicates that on average, there was

one connection from each X t−τ

i to X t
j . After generating the connections between the variables,

similar to Equation (4.17), each variable was generated using the following function based
on the index models:

X t
j = tanh

(
f (1)j (P̃A j)

)
+ cos

(
f (2)j (P̃A j)

)
+ sin

(
f (3)j (P̃A j)

)
+ s j

(
P̃A j
)

Nt
j, (4.18)

where

f (w)j =
L

∑
τ=0

∑
i∈paτ ( j)

[W (w)
τ ]i, jX t−τ

i . w = 1,2,3

For the scaling function s j, for each j, we randomly selected a strictly positive nonlinear
function from a set

{1/(1+ exp
(
g(P̃A j)

)
)+0.5, exp(g(P̃A j)), tanh(g(P̃A j))+1.5}, (4.19)

where

g(P̃A j) =
L

∑
τ=0

∑
i∈paτ ( j)

[Cτ ]i, jX t−τ

i .

The connection weights W (1)
τ ,W (2)

τ ,W (3)
τ were sampled from ±U(0.5,2.0), and Cτ was

sampled from ±U(0.4,0.8).
The parameters for TS-LSNM and NTS-NOTEARS were determined by performing a

grid search in the condition of P = 20, and Nt
j ∼ U(−1/

√
3,1/
√

3) with parameter space
λ1 = λ2 ∈ {0.05,0.01,0.005},w ∈ {0.3,0.2,0.1}, resulting in λ1 = λ2 = 0.005 for both
methods, w = 0.1 for NTS-NOTEARS and w = 0.2 for TS-LSNM. The number of hidden
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Fig. 4.8 Results on synthetic data using different number of variables P and different noise
distributions (lower the better)

layers was set to 1, and the kernel size S was set to 10. The maximum length L of the
temporal dependencies of the data and models was set to 1.

We conducted experiments on the combination of different numbers of variables P =

{10,20,30,40} and noise distributions Nt
j∼{U(−1/

√
3,1/
√

3),N (0,1),Gumbel(0,
√

6/π)}.
We generated 2000 data points, scaled all the variables to zero-mean unit variance, and shuf-
fled the column order. We used the structural Hamming distance as an evaluation metric, and
each experiment was performed 20 times.

Results

The results are shown in Figure 4.8 (lower the better). We can see that TS-LSNM generally
outperformed NTS-NOTEARS with respect to SHD, indicating the effectiveness of modeling
heteroscedasticity. We can also see that the estimation performance of TS-LSNM decreased
when the noise term follows the Gaussian distribution or the Gumbel distribution; those
violate the symmetric assumption of the log-probability (Equation (4.11)), though we still
obtained better results than NTS-NOTEARS. Both methods occasionally output large SHD,
possibly caused by a convergence on a local minimum. In practice, one can fit the model
several times and adopt a result that minimizes the objective function.





Chapter 5

Causal Discovery for Groups of Variables
on Data Beyond Linear Functional
Relations

In this chapter, we describe part of the contributions of Article II (Structure Learning for
Group of Variables with Nonlinear Time-Series Data with Location-Scale Noise), which
proposes a novel method for learning causal structure among groups of variables not limited
to data with linear functional relations. We first explain the problem definition in Section 5.1
and then introduce existing methods based on FCMs in Section 5.2. After that, we introduce
the proposed method in Section 5.3 and the results of numerical experiments on synthetic
data in Section 5.4.

5.1 Problem Definition

In this section, we introduce a problem definition of performing causal discovery when there
exists a group of variables. For instance, the relationship between brain regions rather than
the individual measurement positions in functional magnetic resonance imaging (fMRI)
data is of interest to researchers in neuroscience (Smith et al., 2011). In manufacturing,
multiple measurements obtained from the same machine show relatively strong correlations.
Therefore, one can consider obtaining a graph representing causal structure among groups of
variables, which is more comprehensive compared to a graph of individual variables.

A standard approach to infer such a graph is to aggregate variables by calculating,
for example, the sum of the variables in the same group (Scheines and Spirtes, 2008).
Another option is to select one variable per group (Marazopoulou et al., 2016). Although
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(a) Variable DAG (b) Group DAG

Fig. 5.1 Example of a variable DAG and a group DAG.

these approaches can reduce the computation time by reducing dimensionality, they reduce
the performance of existing causal discovery methods due to changes in the conditional
dependencies between variables (Scheines and Spirtes, 2008; Spirtes et al., 2000) or the
cancellation of dependence (Wahl et al., 2023).

Here we first describe the problem definition using the terms based on (Parviainen and
Kaski, 2017). Recall that a graph G representing the causal structure of P variables can be
parameterized by the adjacency matrix B ∈ {0,1}P×P, where [B]i, j = 1 if and only if a direct
connection from Xi to X j exists. Assume that each variable belongs to one of M(M ≤ P)
groups, and let K = {K(1), ...,K(M)} be a set of index sets for each group. Groups {1, ...,M}
is an ordered set, where group l has no connection to group k(< l). Let Y = {Y1, ...,YM}
be a supervertex obtained by contracting variables X in the same group on G . A graph on
X is called a variable graph and a graph on Y is called a group graph; the corresponding
adjacency matrices B ∈ {0,1}P×P and B

′ ∈ {0,1}M×M are referred to as variable adjacency
matrices and group adjacency matrices, respectively.

An example of a variable DAG with grouping K and the corresponding group DAG is
shown in Figure 5.1. B

′
encapsulates the connections between the groups, where [B

′
]k,l = 1

if and only if ∃[B]i∈K(k), j∈K(l) = 1. The group graph of G is further assumed to be DAG,
where G is called group-acyclic given the grouping K.

The goal is to estimate B′ from observational data, which we call the corresponding graph,
group DAG. Many existing causal discovery methods perform estimation under M = P, e.g.,
the number of groups is equal to that of variables; we call this the corresponding graph,
variable DAG.
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5.2 Existing Methods

This section introduces existing works on causal discovery among the group of variables
based on FCMs. There are several works we do not include the details: Causal autoregressive
flow model (Khemakhem et al., 2021) leveraging normalizing flows are used to capture data
non-linearity. The two group vector causal inference method (Wahl et al., 2023) can also
capture non-linearity; however, they are limited to inference of a causal direction between
two groups and cannot be applied to three or more groups. For the conditional-independence-
based structure-learning methods, which is out of scope for this thesis, Parviainen and Kaski
(2017) proposed an estimation method in which a directed acyclic graph is constructed over
the individual variables to infer connections between groups.

5.2.1 GroupLiNGAM: Infer Groupings and Relations

Model Definition

GroupLiNGAM (Kawahara et al., 2010) is a generalization of LiNGAM used to describe
causal structure among a group of variables. Let l( j) be an index of a group to which a
variable X j belongs. Then, GroupLiNGAM is represented by a collection of P equations, as
follows:

X j = ∑
l(i)<l( j),i ̸= j

b jiXi +N j, j = 1, ...,P (5.1)

where noise terms N j are generated from non-Gaussian distributions, are mutually indepen-
dent over the groups, and need not be independent of each other in the same group. By
setting a vector of variables in group l as XXX l = X j∈K(l) and a vector of corresponding noise
terms as NNNl = N j∈K(l), Equation (5.1) can be represented by

XXX l = ∑
k<l

Bl,kXXXk +NNNl, l = 1, ...,M

where Bl,k is a matrix of connection strength from a vector of group k to group l. Each group
of variables is generated from the variables in preceding groups.

Estimation

The corresponding estimation algorithm, also termed GroupLiNGAM, seeks to find the
causal structure among groups and the grouping of the variables. Given that a group of
variables XXX l is exogenous if and only if XXX l is independent of the residuals obtained by
regressing XXX s = X j/∈K(l) on XXX l (Kawahara et al., 2010), GroupLiNGAM recursively finds an
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exogenous group until the full causal order of the group is inferred. The search space for
finding the grouping of the variables and the exogenous group grows exponentially in the
number of variables, hence the algorithm is infeasible for a large number of variables.

5.2.2 DirectGroupLiNGAM: Efficient Estimation Under Known Group-
ings

DirectGroupLiNGAM (Entner and Hoyer, 2012) is an extension of DirectLiNGAM for
estimating the causal structure among groups of variables, assuming that the grouping of the
variables is known in prior. The estimation algorithm is similar to DirectLiNGAM, where
regression and identification of an exogenous group are recursively performed based on the
observation of the following lemma (Entner and Hoyer, 2012):

Lemma 5.1. Suppose that a data is generated from GroupLiNGAM:

XXX l = ∑
k<l

Bl,kXXXk +NNNl. l = 1, ...,M

Let RRRk
l := XXX l−CXXXk be the regression residuals when regressing XXX l on XXXk using ordinary

least squares. Then, group k is exogenous if and only if XXXk ⊥⊥ RRRk
l satisfies for all l ̸= k.

The main difference in the estimation algorithm lies in how an exogenous group is
identified; three approaches are provided (Entner and Hoyer, 2012). The typical approach
termed DirectGroupLiNGAM combines p-values obtained by the independence test under
the null hypothesis of XXXk ⊥⊥ RRRk

l with the Fisher’s method (Fisher, 1970) and selects a group
that likely minimizes the p-values.

5.3 Causal Discovery on Groups of Variables with Continu-
ous Optimization

In this section, we give a summary of the second major contribution of Article II on developing
an estimation for groups of variables that can be used with the estimation of TS-LSNM and
other existing continuous optimization-based methods. This is done by defining an algebraic
constraint that captures the causal structure among groups of variables.

Recall that a variable graph with P variables represented by a binary adjacency matrix
B ∈ {0,1}P×P with grouping K = {K(1), ...,K(M)} of M groups can be converted to a
group graph represented by a group adjacency matrix B

′ ∈ {0,1}M×M (Section 5.1). We
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extend B and B
′
to the weighted adjacency matrix. Suppose we have a weighted adjacency

matrix W ∈ RP×P representing the connection strength between individual variables. The
corresponding weighted group adjacency matrix W

′ ∈ RM×M ≥ 0 can be calculated as
follows:

[W
′
]k,l =

0 if k = l,

∑i∈K(k)∑ j∈K(l)[W ◦W ]i, j else
. (5.2)

Here, [W
′
]k,l denotes the total amount of squared connection strengths from the variables in

groups k to that in group l. We do not claim that this calculation is optimal; for example, we
can use the absolute values of W to calculate W

′
. The diagonal elements of W

′
are set to zero

to enable connections between variables within the same group.
By substituting W

′
into the algebraic constraint h (4.5), we obtain a constraint for the

group DAGs, which we call the group DAG constraint:

h(W
′
) = tr(eW

′◦W ′ )−M = 0. (5.3)

The group DAG constraint is satisfied if and only if the corresponding variable graph is
group-acyclic.

Corollary 5.2 (Acyclicity of group DAGs). A variable graph G with grouping K represented
by a weighted adjacency matrix W is group-acyclic if and only if the constraint in Equation
(5.3) is satisfied.

Proof. From Equation (5.2), we can see that [W
′
]k,l > 0 if and only if ∃[W ]i∈K(k), j∈K(l) ̸= 0;

thus, W
′
represents the weighted adjacency matrix of the group graph of G . From Theorem

4.5, tr(eW
′◦W ′ )−M = 0 is satisfied if and only if the group graph of G is acyclic, which

implies that G is group-acyclic.

By replacing the group DAG constraint with the algebraic constraint (4.5), we can
estimate the structure among the groups of variables using methods adopting the existing
algebraic DAG constraint.

5.4 Numerical Experiments

This section reiterates the results of the numerical experiments conducted to assess the effect
of the group DAG constraint using synthetic data, given in Section 4 of Article II. Compared
to the numerical experiment in Section 4.5, the main difference was how to generate a true
graph.
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(a) Variable DAG (b) Group DAG

Fig. 5.2 Simulated variable DAG and group DAG (Figure 2 of Article II)

For each variable, we randomly assigned group l ∈ {1, ...,M} such that the groups had
an equal number of variables. Then, we randomly selected a parent variable for each group
and generated an intragroup DAG with a tree structure having a depth of 1. This operation
simulated the observation that variables in the same group had similar values. Subsequently,
starting from the first group k = 1, we assigned a connection from the variables in subsequent
groups l (l > k) to the variables in group k with a probability of 0.1, where at least one
connection from group l to group k was established. As a result, we obtained an adjacency
matrix B∈ {0,1}P×P representing a group-acyclic graph. An example of a simulated variable
DAG and the corresponding group DAG for P = 12 and M = 3 are shown in Figure 5.2.

5.4.1 Nonlinear Data

First, we report the results of experiments on nonlinear data with heteroscedasticity but no
temporal dependencies to examine the effect of the group DAG constraint applied to the
existing estimation algorithm.

Setup

Based on each randomly generated graph, we generated data from Equation (4.18) with L = 0
and s j = 1. We compared the following four methods: NOTEARS-MLP (Zheng et al., 2020),
NOTEARS-MLP using randomly selected variables for each group (NOTEARS-MLP-SEL),
NOTEARS-MLP using the average value of the variables for each group (NOTEARS-MLP-
AVE), and NOTEARS-MLP with a group DAG constraint (NOTEARS-MLP-ACY). All four
methods had the same parameter settings of NOTEARS-MLP given in the original paper,
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Fig. 5.3 Results on synthetic data using different number of variables P, number of groups M
(Figure 3 of Article II)

i.e., λ1 = λ2 = 0.01, and w = 0.3, and the MLPs consisted of a single hidden layer with 10
nodes.

Results

The results for different numbers of variables P= {10,20,30,40} and number of groups M =

{5,10} are presented in Figure 5.3. As shown, NOTEARS-MLP-ACY outperformed the other
methods, indicating the effectiveness of the group DAG constraint. Interestingly, NOTEARS-
MLP-AVE and NOTEARS-MLP-SEL exhibited worse performance than NOTEARS-MLP,
indicating that aggregating the information of the groups leads to inferior results. The cases
of P = 10 and M = 10 corresponded to the estimation of the variable DAGs; thus, the four
methods exhibited identical results.

5.4.2 Nonlinear Time-Series Data with Location-Scale Noise

Next, we describe the results on nonlinear time-series data with location-scale noise to assess
the performance of TS-LSNM and TS-LSNM with the group DAG constraint.
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Setup

Nonlinear time-series data with location-scale noise was generated using Equation (4.18),
with the maximum length L of the temporal dependencies set to 1.

We compared three methods: NTS-NOTEARS, TS-LSNM, and TS-LSNM with group
DAG constraint (TS-LSNM-ACY). The parameters for each method were determined by
performing a grid search in the condition of M = 10 with other settings as the same as
Section 4.8. As a result, λ1 = λ2 = 0.01 for all methods, w = 0.2 for NTS-NOTEARS and
TS-LSNM-ACY, and w = 0.3 for TS-LSNM were chosen.

As NTS-NOTEARS and TS-LSNM do not necessarily return a group DAG, we recur-
sively remove edges with the smallest absolute value from the estimated group adjacency
matrix until we obtain a group-acyclic graph, which is analogous to the postprocessing in
(Ng et al., 2020).

Results

The results are shown in Figure 5.4 (lower the better). TS-LSNM-ACY generally exhibited
the best performance, followed by TS-LSNM, indicating the effectiveness of group DAG
constraint and capturing the heteroscedasticity. Because of the DAG constraint, TS-LSNM-
ACY achieved a relatively low SHD even if the number of variables increased.
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Fig. 5.4 Results on synthetic data using different number of variables P, number of groups
M, and different noise distributions (Figure 4 of Article II)





Chapter 6

Application to Real-world Manufacturing
Data

Finally, we summarize the results obtained from numerical experiments on real-world data
collected from a ceramic substrate manufacturing process, described in Article II.

6.1 Ceramic Substrate Manufacturing Process

A ceramic substrate is a ceramic structure with high porosity cell walls forming a honeycomb
used to purify gases emitted from engines of automobiles (Yamada et al., 2002). For example,
they convert harmful nitrogen oxide and carbon monoxide to less harmful nitrogen and
carbon dioxide. Here, we are interested in a kneading process of manufacturing ceramic
substrates. The process uses two kneaders (upper and middle) to mix the ingredients of
the ceramic, each of which was cooled using a separate water-cooled chiller. The kneaded
ingredients were cut to the same length and baked. The goal was to identify the cause of
cutting torque, which is measured as an alternative characteristic of the viscosity of the
ceramic and is closely related to crack failure during baking. A schematic of the kneading
process and collected measurements are depicted in Figure 6.1.

The temperature, electricity (voltage and frequency), and pressure were measured at
several positions of the kneaders and chillers. We identified 19 variables and 2000 data
points after removing obvious outliers for fitting each model. We assigned groups to each
variable according to domain knowledge; the details of these groups are presented in Table
6.1. Scatter plots of the data are depicted in Figure 6.2. From Figure 6.2, we can see that the
data more or less exhibit nonlinearity as well as heteroscedasticity.
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Fig. 6.1 Schematic of a kneading process in ceramic substrate manufacturing, and corre-
sponding measurements. The rounded rectangles denote the group name specified in Table
6.1.

Table 6.1 Assigned groups for the ceramic manufacturing process data (Table 1 of Article II)

Group ID Name Description # of variables

1 U_chiller_T Upper chiller temperature 1
2 U_kneader_T Upper kneader temperature 3
3 U_kneader_E Upper kneader electricity 3
4 M_chiller_IN Water entering middle chiller 3
5 M_chiller_OUT Water exiting middle chiller 2
6 M_kneader_T Middle kneader temperature 3
7 M_kneader_E Middle kneader electricity 3
8 Cutter torque Cutting torque 1

We compared group DAGs obtained from two methods that can model non-linear relations
as well as time structure:

• TS-LSNM-ACY (Proposed): TS-LSNM with group acyclicity constraint

• NTS-NOTEARS (Sun et al., 2021)

We incorporated prior knowledge that the cutter torque is a sink by restricting the correspond-
ing kernel weights to zero (Sun et al., 2021).

We used the same parameter settings obtained from the grid search performed in Sec-
tion 5.4.1, where λ1 = λ2 = 0.01,w = 0.2 were used for both methods. In the numerical
experiments on synthetic data, we assumed that the true time lags L were known in advance.
However, in a real-world scenario, we must select an appropriate L value from the data. We
fitted each model with a large time-lag value of L = 5 and estimated the weighted adjacency
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Fig. 6.2 Scatter plots of the ceramic substrate manufacturing process data. Data are
anonymized by standardizing each variable to zero mean and unit variance, and the variable
names are set to the group name of Table 6.1 with sequential numbers if multiple columns
exist in a group.
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Fig. 6.3 Frobenius norm (∥W̃ τ(θ A,θC)∥F ) of the estimated weighted adjacency matrix on
each time lag τ (Figure 10 of Article II)

matrix W̃ τ(θ A,θC) (τ = 0, ...,L). We then calculated the Frobenius norm of the estimated
weighted adjacency matrix for each time lag τ .

The results for selecting L are presented in Figure 6.3, where plateaus are observed for
L > 1 for both methods. Therefore, we selected L = 1 for both methods and fitted the model
again with L = 1. An alternative approach for determining L is to determine the value of the
objective function, although we must fit the model multiple times.
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(a) TS-LSNM-ACY (b) NTS-NOTEARS

Fig. 6.4 Estimated window causal graph of group DAGs for ceramic substrate manufacturing
process data (Figure 5 of Article II).

6.2 Results

The obtained group DAGs are shown in Figure 6.4, where groups estimated not to be
the ancestors of the cutter torque are omitted. Both methods succeeded in recovering the
relationship between the temperature of the kneader (U_kneader_T) and the cutter torque.
The results matched the domain knowledge that the material’s viscosity may change with
temperature. The result of TS-LSNM-ACY, which revealed an arrow from U_kneader_T
to the cooling water flowing into the chiller (M_chiller_IN), was more consistent with
the domain knowledge than the result of NTS-NOTEARS, which revealed a connection
from U_kneader_T to the cooling water flowing out of the chiller (M_chiller_OUT) because
M_chiller_OUT is expected to be controlled by the chiller. Moreover, the result of TS-LSNM-
ACY revealed the correct physical phenomenon in which the chillers cool the kneaders
(M_chiller_IN → M_kneader_T). In contrast, the result of NTS-NOTEARS revealed no
connection between the chillers and the kneaders, indicating that chillers do not cool the
kneaders, which disagrees with expectations from domain knowledge (this was possible if
both chillers were broken and the cooling performance was lost, though this was not the
case). Therefore, we conclude that TS-LSNM-ACY obtained better estimation results than
NTS-NOTEARS.





Chapter 7

Conclusions

This thesis presented novel methods for learning causal relationships from observational data.
We developed a causal discovery method capable of estimating the characteristics of data
collected from a manufacturing process. Although non-linearity and temporal dependency
were addressed in previous studies, many works did not consider heteroscedasticity, where
the variance of a quantity is modulated by others, despite the variance being assessed in
traditional quality control methods. Moreover, although groups of variables need to be
handled carefully in causal discovery, methods for estimating causal structure among groups
of variables beyond linear relationships remained unclear.

After describing the motivation and scope of this thesis in Chapter 1, necessary mathe-
matical backgrounds and definitions of causal models were introduced in Chapters 2 and 3.
Then, starting from the introduction of existing FCMs relevant to this thesis, the proposed
method for estimating LSNM, and its extension to time series data is described in Chapter
4. The problem definition of causal discovery for groups of variables and existing methods,
followed by the proposed method, which can be applied to data beyond linear relation, is
explained in Chapter 5. Finally in Chapter 6, the proposed method is applied to real-world
data, and the results indicate the strength of the proposed method.

The main contribution of this thesis is twofold: (i) In Articles I and II, we proposed an
estimation method for LSNM and then extended the model to exploit time structure. (ii)
In Article II, a novel approach is presented for learning causal structure among groups of
variables for use with continuous optimization-based structure learning methods. These
works provide a causal discovery method that simultaneously handles non-linearity, temporal
dependency, and heteroscedasticity and estimates causal structure among individual and
groups of variables.

Although Articles I and II contributed to developing a causal discovery method suitable
for manufacturing data, many open problems remain, highlighting the limitations of the
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proposed methods. First, the proposed methods assume no latent confounders. Although the
important quality measures of a product are likely to be collected, there is no guarantee that
all relevant information is measured, including confounders. Moreover, although continuous
optimization-based methods can handle latent confounders (Bhattacharya et al., 2021), they
are limited to linear relations, and the extension remains a challenging problem.

Second, on the causal discovery for groups of variables, we assume that the (true)
grouping of variables is known. As we assume an acyclic group graph, incorrect grouping
that violates this assumption may cause the estimation method to output a completely different
graph.

Finally, the proposed estimation method for TS-LSNM fits two CNNs for each variable;
hence, the optimization becomes difficult to converge as the number of variables and sample
size increase. One possible scenario is to leverage a more efficient form of acyclicity
constraint and optimization method (Bello et al., 2022). In addition, it would be interesting
to see the effect of using the skeleton of a DAG inferred with the existing constraint-based
approaches (e.g., FCI algorithm) to limit the search space.
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