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Abstract

This study assumes homothetic robust Epstein-Zin utility and analyzes
the consumption-investment problem and CAPMs under a quadratic
security market model in which interest rates, the market price of risk,
the variances and covariances of asset returns, and inflation rates are
stochastic. First, we demonstrate that homothetic robust Epstein-Zin
utility is interpreted as homothetic stochastic differential utility. Then,
we show that robust investors determine the “worst-case probability”
and the optimal consumption-investment. We clarify the theoretical
structures of robust control. We derive a robust version of the two-
factor CAPM and show that the CAPM can contribute to solving both
the equity premium puzzle and the risk-free rate puzzle. Furthermore,
we derive an approximate testable ICAPM.

Keywords Homothetic robust utility, Stochastic differential utility,
Consumption-investment problem, CAPM, Stochastic volatility, Stochas-
tic inflation

JEL classification C61, D81, G11, G12

1 Introduction

When studying consumption-investment problems and capital asset pricing
models (CAPMs), it is important to address three key issues. The first issue
is to incorporate into security market models the stylized facts that interest
rates, the market price of risk, the variances and covariances of asset re-
turns, and inflation rates are stochastic and mean-reverting. In particular,
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it is essential to incorporate stochastic inflation, because inflation-deflation
risk causes asset prices to fluctuate directly and indirectly through mone-
tary policies implemented to control inflation-deflation risk. It should be
noted that the indirect effect has become much stronger than the direct ef-
fect because of the large-scale easing and tightening of monetary policy since
the global financial crisis. The second issue is to consider the equity pre-
mium puzzle (Mehra and Prescott (1985)) and the risk-free rate puzzle. The
third issue is to assume a utility that accounts for Knightian uncertainty, as
recognized during the global financial crisis.

Regarding the first issue, Batbold, Kikuchi, and Kusuda (2022) exam-
ine the consumption-investment problem for long-term investors with con-
stant relative risk aversion (CRRA) utility under a quadratic security mar-
ket model that satisfies the above stylized facts, including inflation-deflation
risk. The class of quadratic models, which is a generalization of the affine
models presented by Duffie and Kan (1996), has been independently devel-
oped by Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002).1

Batbold et al. (2022) derive an optimal portfolio decomposed into myopic
demand, intertemporal hedging demand, and inflation-deflation hedging de-
mand, and show that all three types of demand are nonlinear functions of
the state vector. Their numerical analysis presents the nonlinearity and
significance of market timing effects. Such nonlinearity is attributed to the
stochastic variances and covariances of asset returns, whereas such signif-
icance is attributed to inflation-deflation hedging demand in addition to
myopic demand.

For the second issue, Mehra and Prescott (1985) show that the CAPM
beased on the CRRA utility, which has a good property called homoth-
eticity2, cannot explain the high market price of risk observed in the se-
curities market, that is, the equity premium puzzle. Given that CRRA
utility does not separate relative risk aversion and elasticity of intertempo-
ral substitution (EIS), Epstein and Zin (1989) propose Epstein-Zin utility
that generalizes CRRA utility and separates these properties while retaining
homotheticity. However, Weil (1989) shows that the CAPM based on the
Epstein-Zin utility cannot explain either the high market price of risk or the
low-risk free rate (i.e., the risk-free rate puzzle) observed in the securities
market.

For the thrid issue, Anderson, Hansen, and Sargent (2003) and Hansen

1Quadratic security market models are employed in studies of empirical analysis (Leip-
pold and Wu (2007), Kim and Singleton (2012), and Kikuchi (2024)), security pricing
(Chen, Filipović, and Poor (2004), Boyarchenko and Levendorskii (2007), and Filipović,
Gourier, and Mancini (2016)), and optimal consumption-investment (Batbold et al. (2022),
Kikuchi and Kusuda (2024a), and Kikuchi and Kusuda (2024b)), because the quadratic
models are sufficiently general to incorporate the stylized facts in the securities markets
mentioned above, while still being analytically tractable.

2A utility function U is homothetic if for any consumption plan c and c̃, and any scalar
α > 0, U(αc̃) ≥ U(αc) ⇔ U(c̃) ≥ U(c).
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and Sargent (2001) propose robust utility. Investors with robust utility re-
gard the “base probability” as the most likely probability; however, they
also consider other probabilities because the true probability is unknown.
Given that robust utility lacks homotheticity, Maenhout (2004) proposes
homothetic robust utility—characterized by relative risk aversion and rela-
tive ambiguity aversion—that represents the investor’s degree of distrust of
the base probability. Kikuchi and Kusuda (2024a) study the consumption-
investment problem for long-term investors with homothetic robust utility
under the quadratic security market model of Batbold et al. (2022). Because
a nonlinear term appears in the partial differential equation (PDE) for the
indirect utility function, Kikuchi and Kusuda (2024a) use a linear approxi-
mation method to derive an approximate optimal portfolio. Their numerical
analysis confirms the nonlinearity and significance of market timing effects.
Homothetic robust utility can be interpreted as homothetic robust CRRA
utility in the sense that homothetic robust utility converges to CRRA util-
ity as ambiguity aversion approaches zero. CRRA utility does not sepa-
rate relative risk aversion and elasticity of intertemporal substitution (EIS).
Epstein-Zin utility (Epstein and Zin (1989)) generalizes CRRA utility and
separates these properties while retaining homotheticity. Maenhout (2004)
also introduces homothetic robust Epstein-Zin (HREZ) utility to derive the
CAPM. However, he does not show the properties of HREZ utility. Skiadas
(2003) proves that robust utility is a stochastic differential utility (SDU),
proposed by Duffie and Epstein (1992a). They demonstrate that SDU ex-
hibits various desirable properties. Skiadas (2003) generalizes the result to
a more general robust utility, including HREZ utility. However, this proof
contains an error in the calculation process, as presented in Section 3.

Investors with homothetic robust utility first determine the “conditional
worst-case probability” of minimizing utility for a given consumption and in-
vestment and then determine the optimal consumption and investment that
maximize the utility under the conditional worst-case probability. These op-
timal consumption-investment decisions implicitly determine the worst-case
probability. Homothetic robust utility is used in robust portfolio studies,
such as Skiadas (2003), Maenhout (2006), Liu (2010), Branger, Larsen, and
Munk (2013), Munk and Rubtsov (2014), Yi, Viens, Law, and Li (2015),
Batbold, Kikuchi, and Kusuda (2019), and Kikuchi and Kusuda (2024a)3.
These studies have done little to elucidate the theoretical structures of the
i) budget constraint equation and market price of risk under the conditional
worst-case probability and the worst-case probability; and ii) the two types
of CAPMs under the base probability and the worst-case probability.

We assume HREZ utility and consider the consumption-investment prob-
lem and CAPMs under the quadratic security market model of Kikuchi and

3With the exception of Kikuchi and Kusuda (2024a), these ignore some stylized facts
in the securities market.
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Kusuda (2024a). When we derive CAPMs, we assume that the investor is
the representative agent in equilibrium. As it is natural to assume that the
representative agent is an infinitely lived investor, we consider the infinite-
time consumption-investment problem for investors with HREZ utility. The
purpose of this study is to show the properties of HREZ utility and present
a theoretical analysis of the consumption-investment problem and CAPMs
under the quadratic security market model. The main results of this study
are summarized as follows. First, we prove that HREZ utility is SDU under
certain integrability conditions by modifying the incorrect proof in Skiadas
(2003). Then, following Duffie and Epstein (1992a), we show that HREZ
utility is continuous, consistent, strictly increasing, risk averse, and homo-
thetic.

Second, we consider the consumption-investment problem for the infinite-
lived investor with HREZ utility and derive the conditional worst-case prob-
ability for a given consumption and “investment,” which is the product of
the volatility matrix of risky securities and the vector of the fractions of
wealth invested in those risky securities. Comparing the budget constraint
under the conditional worst-case probability with the budget constraint un-
der the base probability, we find that the volatility of wealth is invariant,
whereas the market price of risk in the return on wealth is replaced by
the “investor price of risk under the conditional worst-case probability” dis-
counted from the market price of risk. Given that the discount from the
market price of risk is permanent, this implies that investors with HREZ
utility assume long-term stagnation rather than increased volatility as the
worst-case scenario.

Third, we derive the optimal consumption and investment, both of which
depend on the unknown function that comprises the indirect utility function.
The unknown function is a solution to a nonlinear PDE. We show that
the optimal investment is the weighted average of the market price of risk
and the “investor hedging value of intertemporal uncertainty.” The weights
are the relative risk tolerance and one minus the relative risk tolerance,
respectively. We also show that the “investor price of risk under the worst-
case probability” is the weighted average of the market price of risk and
the investor hedging value of intertemporal uncertainty. The weights are
the ratio of risk aversion to uncertainty aversion, and ambiguity aversion
to uncertainty aversion, respectively. In addition, the optimal investment
and investor price of risk under the worst-case probability are both the
weighted averages of the market price of risk and the investor hedging value
of intertemporal uncertainty.

Fourth, we derive robust versions of the intertemporal CAPM (ICAPM)
based on Epstein-Zin utility and of the two-factor CAPM (Duffie and Ep-
stein (1992b)). We show that the equilibrium market price of risk under the
worst-case probability is consistent with the equilibrium market price of risk
based on Epstein-Zin utility. Furthermore, we demonstrate that i) the equi-
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librium market price of risk based on HREZ utility is higher than that based
on Epstein-Zin utility, and ii) the equilibrium risk-free rate based on HREZ
utility is lower than that based on Epstein-Zin utility. Therefore, the robust
CAPMs can contribute to solving both the equity premium puzzle and risk-
free rate puzzle. Finally, we derive the exact solution of the nonlinear PDE
for the unit EIS case and a loglinear approximate solution of the PDE for
the general case. We then present the approximate optimal portfolio and
approximate testable ICAPM based on a loglinear approximate solution.

The remainder of this paper is organized as follows. In Section 2, we
review the quadratic security market model. In Section 3, we introduce
HREZ utility and show its properties. In Section 4, we theoretically analyze
the optimal robust consumption and investment problem. In Section 5, we
derive robust CAPMs. In Section 6, we derive the optimal portfolio for the
unit EIS case and an approximate optimal portfolio for the general case. In
Section 7, future research directions are discussed.

2 Quadratic Security Market Model

In this section, we review the quadratic security market model and stochastic
differential equations (SDEs) of no-arbitrage security price processes, based
on the work of Kikuchi and Kusuda (2024a).

2.1 Quadratic Security Market Model

We consider frictionless US markets over the period [0,∞). Investors’ com-
mon subjective probability and information structure are modeled by a com-
plete filtered probability space (Ω,F ,F,P), where F = (Ft)t∈[0,∞) is the nat-
ural filtration generated by an N -dimensional standard Brownian motion
Bt. We denote the expectation operator under P by E and the conditional
expectation operator given Ft by Et.

There are markets for a consumption commodity and securities at every
date t ∈ [0,∞), and the consumer price index pt is observed. The traded
securities are the instantaneously nominal risk-free security called the money
market account and a continuum of zero-coupon bonds and zero-coupon
inflation-indexed bonds whose maturity dates are (t, t+ τ∗], where τ∗ is the
longest time to maturity of the bonds. Each zero-coupon bond has a 1 US
dollar payoff at maturity, and each zero-coupon inflation-indexed bond has
a pT US dollar payoff at maturity T . Moreover, K-types of stocks or indices
are traded.

At every date t, Pt, P
T
t , Q

T
t , and S

k
t denote the USD prices of the money

market account, zero-coupon bond with maturity date T , zero-coupon inflation-
indexed bond with maturity date T , and k-th index, respectively. Let A′

and I denote the transpose of A and N ×N identity matrix, respectively.
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We assume the following quadratic security market model introduced by
Kikuchi and Kusuda (2024a).

Assumption 1. Let (ρ0, ι0, δ0k, σ0k), (λ, ρ, ι, σp, δk, σk), and (R,∆k,Σk) de-
note scalers, N -dimensional vectors, and N ×N positive-definite symmetric
matrices, respectively, where k ∈ {1, · · · ,K}.

1. State vector process Xt is N -dimensional and satisfies the following
SDE:

dXt = −KXt dt+ I dBt, (2.1)

where K is an N ×N lower triangular matrix.

2. The market price λt of risk and instantaneous nominal risk-free rate
rt are provided as

λt = λ+ ΛXt, (2.2)

rt = ρ0 + ρ′Xt +
1

2
X ′
tRXt, (2.3)

where Λ is an N ×N lower triangular matrix

3. The consumer price index pt satisfies

dpt
pt

= ι(Xt) dt+ σp(Xt)
′dBt, p0 = 1, (2.4)

where µp(Xt) and σ
p(Xt) are given by

µp(Xt) = ι0 + ι′Xt +
1

2
X ′
tIXt, (2.5)

σp(Xt) = σp +ΣpXt, (2.6)

where I is an N ×Npositive-semidefinite symmetric matrix.

4. The dividend of the k-th stock or index is given by

Dk
t =

(
δ0k + δ′kXt +

1

2
X ′
t∆kXt

)
exp

(
σ0kt+ σ′kXt +

1

2
X ′
tΣkXt

)
.

(2.7)

5. The parameters introduced above and a matrix R̄ defined by

R̄ = R− I +Σ′
pΛ + Λ′Σp (2.8)

satisfy the regularity conditions shown in Appendix A.1.

6. Markets are complete and arbitrage-free.

Batbold et al. (2022) show the SDEs of no-arbitrage security price pro-
cesses.
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Lemma 1. Let τ = T − t denote the time to maturity of bond P Tt or
inflation-indexed bond QTt . Under Assumption 1, the dynamics of security
price processes satisfy the following:

1. The default-free bond with time τ to maturity:

dP Tt
P Tt

=
(
rt + (σ(τ) + Σ(τ)Xt)

′λt
)
dt+(σ(τ)+Σ(τ)Xt)

′ dBt, P TT = 1,

(2.9)
where (Σ(τ), σ(τ)) is a solution to the system of ODEs (A.3) and
(A.4).

2. The default-free inflation-indexed bond with time τ to maturity:

dQTt
QTt

=

(
rt +

(
σq(τ) + Σq(τ)Xt

)′
λt

)
dt+

(
σq(τ) + Σq(τ)Xt

)′
dBt,

(2.10)
where (Σq(τ), σq(τ)) = (Σ̄q(τ) +Σp, ς̄q(τ) + σp) and (Σ̄q(τ), ς̄q(τ)) is a
solution to the system of ODEs (A.5) and (A.6).

3. The k-th index:

dSkt +Dk
t dt

Skt
=
(
rt + (σk +ΣkXt)

′λt
)
dt+ (σk +ΣkXt)

′ dBt, (2.11)

where Σk is a solution to Eq. (A.7) and σk is given by Eq. (A.8).

Proof. See Appendix A.1 in Kikuchi and Kusuda (2024a).

3 HREZ Utility and Properties

We introduce HREZ utility and demonstrate its properties.

3.1 HREZ Utility

We begin with the following continuous-time version (Duffie and Epstein
(1992a)) of Epstein-Zin utility.

Ṽt = Et

[∫ T ∗

t
f(cs, Ṽs)ds

]
, (3.1)

where f denotes the normalized aggregator of the form:

f(c, v) =


β

1− ψ−1
(1− γ)v

((
c
(
(1− γ)v

)− 1
1−γ
)1−ψ−1

− 1

)
, if ψ ̸= 1,

β(1− γ)v
(
log c− 1

1− γ
log
(
(1− γ)v

))
, if ψ = 1,

(3.2)
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where β > 0 is the subjective discount rate, γ ∈ (0, 1)∪ (1,∞) is the relative
risk aversion, and ψ > 0 is the EIS.

Whereas an investor with robust utility regards probability P (“base
probability”) as the most likely probability, they also consider other proba-
bilities because the true probability is unknown. Thus, the investor assumes
set P of all equivalent probability measures4 as alternative probabilities. Ac-
cording to Girsanov’s theorem, any equivalent probability measure is char-
acterized by a measurable process ξt with Novikov’s integrability condition
as the following Radon-Nikodym derivative:

ET ∗

[
dPξ

dP

]
= exp

(∫ T ∗

0
ξt dBt −

1

2

∫ T ∗

0
|ξt|2dt

)
∀T ∗ ∈ (0,∞). (3.3)

Therefore, the investor chooses the worst-case probability that minimizes
the utility among P for every consumption plan. The investor rationally
determines the worst-case probability by considering deviations from P.

Definition 1. HREZ utility is defined by

U(c) = inf
Pξ∈P

Eξ

[∫ T ∗

0

(
f(ct, V

ξ
t ) +

(1− γ)V ξ
t

2θ
|ξt|2

)
dt

]
, (3.4)

where c is a consumption plan such that c = (ct)t∈[0,T ∗) is an adapted non-

negative consumption-rate process, Eξ is the expectation under Pξ, θ > 0 is
relative ambiguity aversion, and V ξ

t is the utility process, defined recursively
as follows:

V ξ
t = Eξt

[∫ T ∗

t

(
f(cs, V

ξ
s ) +

(1− γ)V ξ
s

2θ
|ξs|2

)
ds

]
, V ξ

T ∗ = 0. (3.5)

3.2 HREZ Utility as Homothetic SDU

For simplicity, we assume ψ ̸= 1 in Eq. (3.4). First, we prove that HREZ
utility is SDU under certain integrability conditions by modifying the incor-
rect proof in Skiadas (2003). Then, following Duffie and Epstein (1992a),
we show that HREZ utility is continuous, consistent, strictly increasing, risk
averse, and homothetic.

3.2.1 SDU Representation

Let β∗ =
β(1− γ)

1− ψ−1
. Then, Eq. (3.5) is rewritten as

V ξ
t = Eξt

[∫ T ∗

t
e−β

∗(s−t)

(
f∗(cs, V

ξ
s ) +

(1− γ)V ξ
s

2θ
|ξs|2

)
ds

]
, (3.6)

4A probability measure P̃ is said to be an equivalent probability measure of P if and
only if P(A) = 0 ⇔ P̃(A) = 0.
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where

f∗(c, v) =
β

1− ψ−1
(1− γ)v

(
c
(
(1− γ)v

)− 1
1−γ
)1−ψ−1

. (3.7)

Suppose a progressively measurable pair (V ∗, σ∗) satisfies

dV ∗
t = −

(
f∗(ct, V

∗
t )− β∗V ∗

t − θ

2(1− γ)V ∗
t

|σ∗t |2
)
dt+ (σ∗t )

′dBt, V ∗
T ∗ = 0.

(3.8)
From the Girsanov theorem, as the standard Brownian motion under Pξ is

given by Bξ
t = Bt −

∫ t

0
ξs ds, Eq. (3.8) is rewritten as

dV ∗
t = −

(
f∗(ct, V

∗
t )− β∗V ∗

t − θ

2(1− γ)V ∗
t

|σ∗t |2 − (σ∗t )
′ξt

)
dt

+ (σ∗t )
′dBξ

t , V ∗
T ∗ = 0. (3.9)

Then, the following equation holds:

V ξ
t = V ∗

t + Eξt

[∫ T ∗

t
e−β

∗(s−t)
(
f∗(cs, V

ξ
s )− f∗(cs, V

∗
s )

+
1− γ

2θ
(V ξ
s − V ∗

s )|ξs|2 +Q(ξs, σ
∗
s , Vs)

)
ds

]
, (3.10)

where

Q(ξs, σ
∗
s , Vs) =

(1− γ)V ∗
s

2θ

∣∣∣∣ξs + θ

(1− γ)V ∗
s

σ∗s

∣∣∣∣2 ≥ 0. (3.11)

Remark 1. Skiadas (2003) shows the following equation:

V ξ
t = V ∗

t + Eξt

[∫ T ∗

t
e−β

∗(s−t)
(
f∗(cs, V

ξ
s )− f∗(cs, V

∗
s ) +Qξ(s, V ξ

s )
)
ds

]
,

(3.12)
where

Qξ(s, V ξ
s ) =

(1− γ)V ξ
s

2θ

∣∣∣∣∣ξs + θ

(1− γ)V ξ
s

σ∗s

∣∣∣∣∣
2

. (3.13)

It is evident that Eq. (3.12) does not hold. However, the subsequent proof
in Skiadas (2003) can be applied in the same manner.

We define the function h∗ as

h∗(ξ, c, v) = f∗(c, v) +
1− γ

2θ
v|ξ|2. (3.14)

Then, Eq. (3.10) is rewritten as

V ξ
t = V ∗

t +Eξt

[∫ T ∗

t
e−β

∗(s−t)
(
h∗(ξs, cs, V

ξ
s )−h∗(ξs, cs, V ∗

s )+Q(ξs, σ
∗
s , V

∗
s )
)
ds

]
,

(3.15)
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and h∗vv = f∗vv is calculated as

h∗vv(ξ, c, v) = β(γ − ψ−1)c1−ψ
−1(

(1− γ)v
)− 1−ψ−1

1−γ −1
. (3.16)

Thus, if γ > ψ−1, then h∗ is convex in its utility argument; conversely, if
γ < ψ−1, then h∗ is concave in its utility argument. Therefore, we obtain

V ξ
t − V ∗

t ≥


Eξt

[∫ T ∗

t e
−β∗(s−t)h∗v(ξs, cs, V

∗
s )(V

ξ
s − V ∗

s )ds

]
, if γ > ψ−1,

Eξt

[∫ T ∗

t e
−β∗(s−t)(−h∗v(ξs, cs, V ∗

s )
)
(V ξ
s − V ∗

s )ds

]
, if γ < ψ−1.

(3.17)
Under certain integrability conditions on h∗v, in either case, “stochastic
Gronwall-Bellman inequality”5 implies that V ξ

t ≥ V ∗
t P-a.s. for all t ∈

[0, T ∗]. Hence, the minimizer or worst-case probability ξ∗ is given by

ξ∗ = − θ

(1− γ)V ∗σ
∗, (3.18)

and V ξ∗ = V ∗. Therefore, HREZ utility satisfying the above conditions is
SDU of the unnormalized form (3.8).

Remark 2. In Eq. (3.8), as θ ↘ 0, V ∗ converges to Epstein-Zin utility.
When ψ−1 = γ, Eq. (3.8) is simplified as

dV ∗
t = −

(
β

1− γ
c1−γt − βV ∗

t − θ

2(1− γ)V ∗
t

|σ∗t |2
)
dt+ (σ∗t )

′dBt, V ∗
T ∗ = 0,

(3.19)
that is, V ∗ becomes homothetic robust utility. Therefore, HREZ utility is a
generalization of Epstein-Zin utility and homothetic robust utility.

Remark 3. HREZ utility is SDU, and is continuous and consistent, as
shown in Propositions 1 and 4 in Duffie and Epstein (1992a). Let HREZU(β, γ, ψ, θ)
denote HREZ utility with (β, γ, ψ, θ) and the above conditions. From Propo-
sition 6 in Duffie and Epstein (1992a), Eq. (3.8) shows that HREZU(β, γ, ψ, θ1)
is more risk averse than HREZU(β, γ, ψ, θ2) if θ1 > θ2.

3.2.2 Normalized Representation

Next, by using the ordinally equivalent utility presented by Duffie and Ep-
stein (1992a), we show the normalized form of V ∗. The ordinally equivalent
utility V̄ of V ∗ is defined by

V̄ =
1

1− (γ + θ)

(
(1− γ)V ∗)1− θ

1−γ . (3.20)

5See Appendix B in Duffie and Epstein (1992a).
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Then, from Ito’s lemma, V̄ satisfies

V̄t = Et

[∫ T ∗

t
f̄(cs, V̄s)ds

]
, (3.21)

where

f̄(c, v) =
β

1− ψ−1

(
1− (γ+θ)

)
v

((
c
((

1− (γ + θ)
)
v
)− 1

1−(γ+θ)

)1−ψ−1

− 1

)
.

(3.22)

Remark 4. From Proposition 3 in Duffie and Epstein (1992a), HREZ util-
ity with the normalized aggregator f̄ is strictly increasing because f̄ is strictly
increasing in consumption, as follows:

f̄c(c, v) = βc−ψ
−1
((

1− (γ + θ)
)
v
)1− 1−ψ−1

1−(γ+θ)
> 0. (3.23)

In addition, from Proposition 7 in Duffie and Epstein (1992a), HREZ util-
ity with the normalized aggregator f̄ is risk averse because f̄ is concave in
consumption, as shown in the follows:

f̄cc(c, v) = −βψ−1c−ψ
−1−1

((
1− (γ + θ)

)
v
)1− 1−ψ−1

1−(γ+θ)
< 0. (3.24)

Furthermore, from Proposition A in Skiadas (1998), HREZ utility with the
normalized aggregator f̄ is information seeking if γ + θ > ψ−1 because f̄ is
convex in utility, as shown in the follows:

f̄vv(c, v) = β
(
γ + θ − ψ−1

)
c1−ψ

−1
((

1− (γ + θ)
)
v
)− 1−ψ−1

1−(γ+θ)
−1

> 0. (3.25)

3.2.3 Observational Indistinguishability from Epstein-Zin Utility
and Robustness Effect

By substituting ψ−1 = γ into Eq. (3.22), we obtain the normalized aggrega-
tor of homothetic robust (HR) utility f̃ :

f̃(c, v) =
β

1− γ

(
1− (γ + θ)

)
v

((
c
((

1− (γ + θ)
)
v
)− 1

1−(γ+θ)

)1−γ
− 1

)
.

(3.26)
Assume that an investor who has Epstein-Zin utility with (β, γ, ψ) is infor-
mation seeking, that is, γ > ψ−1. We consider another investor who has HR
utility with (β, γ̂, θ). Let γ̂ = ψ−1 and θ = γ − ψ−1. Then, Eqs. (3.2) and
(3.26) show that HR utility with (β, γ̂, θ) is observationally indistinguishable
from Epstein-Zin utility with (β, γ, ψ). This is noted by Maenhout (2004),
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who also interprets the effect of homothetic robustness as follows. Given
that the nonrobust agents have CRRA utility with (β, γ̂), they are equally
willing to substitute over time as across states because γ̂ is the inverse of the
EIS. Robustness makes the agent less willing to substitute across states as
the relative risk aversion becomes γ̂+θ > γ̂, without altering the willingness
to substitute intertemporally, as the EIS remains γ̂−1.

Remark 5. Eqs. (3.2) and (3.22) show that the HREZ utility with (β, γ̂, ψ, θ)
is observationally indistinguishable from the Epstein-Zin utility with (β, γ, ψ)
if γ̂ + θ = γ. Following Maenhout (2004), we can interpret the effect of
homothetic robustness as follows: Suppose that the nonrobust agent has the
Epstein-Zin utility with (β, γ, ψ). What robustness does is to make the agent
less willing to substitute across states, as the relative risk aversion becomes
γ + θ > γ, without altering the willingness to substitute intertemporally, as
the EIS remains ψ.

3.2.4 Homotheticity

Finally, we demonstrate that V ∗ is homothetic. The ordinally equivalent
utility V̂ of V ∗ is defined as

V̂ = |1− γ|
(
(1− γ)V ∗) 1

1−γ . (3.27)

Then, from Ito’s lemma, V̂ satisfies

dV̂t = −
(
f̂(cs, V̂s)− β̂V̂t −

γ + θ

2V̂t
|σ̂t|2

)
dt+ σ̂′tdBt, V̂T ∗ = 0, (3.28)

where β̂ =
β

1− ψ−1
and

f̂(c, v) =
β

1− ψ−1
(1− γ)c1−ψ

−1
( v

1− γ

)ψ−1

. (3.29)

From Proposition 8 in Duffie and Epstein (1992a), SDE (3.28) and Eq. (3.29)
show that V̂ and its ordinally equivalent utility V ∗ are homothetic.

4 Theoretical Analysis of Robust Control

We introduce the robust consumption-investment problem and theoretically
analyze the optimal robust control.

4.1 Robust Consumption-Investment Problem

We consider the infinite-time consumption-investment problem of the infinite-
lived investor.

12



Assumption 2. The investor’s utility is HREZ utility of the form:

U(c) = inf
Pξ∈P

Eξ

[∫ ∞

0

(
f(ct, V

ξ
t ) +

(1− γ)V ξ
t

2θ
|ξt|2

)
dt

]
, (4.1)

where γ > 1, ψ > 1, and

V ξ
t = Eξt

[∫ ∞

t

(
f(cs, V

ξ
s ) +

(1− γ)V ξ
s

2θ
|ξs|2

)
ds

]
. (4.2)

Remark 6. Note that the HREZ utility in Assumption 2 is information
seeking, because γ + θ > 1 > ψ−1.

4.1.1 Portfolio

Let Pt(τ) = P Tt and Qt(τ) = QTt where τ = T − t.

Assumption 3. The investor invests in Pt(τ1), · · · , Pt(τIP ), Qt(τ
q
1 ), · · · , Qt(τ

q
IQ
),

and S1
t , · · · , SKt at time t where IP + IQ +K = N . Let ΦP (τ) and ΦQ(τ q)

denote the portfolio weights of a default-free bond with τ -time to maturity
and a default-free inflation-indexed bond with τ q-time to maturity, respec-
tively. Let Φk denote the portfolio weight of the k-th index. Let Φt and Σ(Xt)
denote the portfolio weight and volatility matrix at time t, respectively. Φt
and Σ(Xt) are expressed as follows:

Φt =



ΦPt (τ1)
...

ΦPt (τIP )

ΦQt (τ
q
1 )

...

ΦQt (τ
q
IQ
)

Φ1
t
...
ΦKt


, Σ(Xt) =



(
σ(τ1) + Σ(τ1)Xt

)′
...(

σ(τIP ) + Σ(τIP )Xt

)′(
σq(τ

q
1 ) + Σq(τ

q
1 )Xt

)′
...(

σq(τ
q
IQ
) + Σq(τ

q
IQ
)Xt

)′
(σ1 +Σ1Xt)

′

...
(σK +ΣKXt)

′


. (4.3)

4.1.2 Real Budget Constraint

Given that the inflation-deflation risk is introduced in the quadratic security
market model of Kikuchi and Kusuda (2024a), we derive the real budget
constraint equation. Therefore, we define the real market price of risk λ̄(Xt)
and real instantaneous interest rate r̄(Xt) as

λ̄(Xt) = λt − σp(Xt), (4.4)

r̄(Xt) = rt − µp(Xt) + λ′tσ
p(Xt). (4.5)

13



Note that λ̄(Xt) is an affine function of Xt, and r̄(Xt) is a quadratic function
of Xt.

λ̄(Xt) = λ̄+ Λ̄Xt, (4.6)

r̄(Xt) = ρ̄0 + ρ̄′Xt +
1

2
X ′
tR̄Xt, (4.7)

where R̄ is given by Eq. (2.8) and

(λ̄, Λ̄) = (λ− σp,Λ− Σp), (4.8)

ρ̄0 = ρ0 − ι0 + λ′σp, (4.9)

ρ̄ = ρ− ι+ Λ′σp +Σ′
pλ. (4.10)

Φ is assumed to be an adapted process. Let W̄ denote the real wealth
process and W̄0 > 0.

Lemma 2. Under Assumptions 1–3, given an initial state (W̄0, X0), con-
sumption plan c, and self-financing portfolio weight Φ, the real budget con-
straint equation is

dW̄t

W̄t
=

(
r̄(Xt) + ς̄ ′tλ̄(Xt)−

ct
W̄t

)
dt+ ς̄ ′t dBt, W̄t > 0 ∀t ∈ (0,∞),

(4.11)
where

ς̄t = Σ(Xt)
′Φt − σp(Xt). (4.12)

Proof. See Appendix A.1 in Kikuchi and Kusuda (2024b).

Remark 7. The real budget constraint represents the instantaneous real
rate of return on wealth. Eq. (4.11) shows that increasing the investment
in the measure of ς̄t increases the wealth volatility, whereas the real expected
excess return on wealth increases in proportion to ς̄t. Thus, the (real) market
price λ̄(Xt) of risk is interpreted as the price per unit of investment for all
investors.

4.1.3 Robust Control Problem

The real budget constraint (4.11) indicates that (c, ς̄) is the control in the
optimal consumption-investment problem. X = (W̄ ,X ′)′. We call ς̄ the
investment control. We say that a control (c, ς̄) is admissible if it satisfies
the real budget constraint equation (4.11) with initial state X0 and there
are measurable functions ĉ(x) and ς̂(x) such that ct = ĉ(Xt) and ς̄t =
ς̂(Xt) for every t ∈ [0,∞). Let B(X0) denote the set of admissible controls.
Furthermore, we call ξ in Eq. (3.3) the probability control. We say that
probability control ξ is admissible if it satisfies Novikov’s condition and there
is a measurable function ξ̂(x) such that ξ̂(Xt) = ξt for every t ∈ [0,∞). Let
P̂(X0) denote the set of admissible probability controls.
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Given Ft and Xt, the investor’s robust consumption-investment problem
and value function are recusively defined as

Vt = sup
(c,ς̄)∈B(Xt)

inf
Pξ∈P̂(Xt)

Eξ
[∫ ∞

t

(
f(cs, Vs) +

(1− γ)Vs
2θ

|ξs|2
)
ds

]
. (4.13)

The recursive definition of the above value function is justified by the fact
that HREZ utility is consistent. Given Ft and Xt = x, the indirect utility
function is defined as J(x) = Vt.

4.2 Conditional Worst-case Probability

First, the conditional worst-case probability for a given control is presented.

As the standard Brownian motion under Pξ is given by Bξ
t = Bt−

∫ t

0
ξs ds,

the SDE for Xt under P
ξ is rewritten as

dXt =

((
W̄t(r̄t + ς̄ ′tλ̄t)− ct

−KXt

)
+

(
W̄tς̄

′
t

I

)
ξt

)
dt+

(
W̄tς̄

′
t

I

)
dBξ

t . (4.14)

The Hamilton-Jacobi-Bellman (HJB) equation for problem (4.13) is then
expressed as

0 = sup
(ĉ,ς̂)∈R+×RN

inf
ξ̂∈RN

{(
w
(
r̄(x) + ς̂ ′λ̄(x)

)
− ĉ

−Kx

)′(
Jw
Jx

)
+ ξ̂′

(
wς̂ ′

I

)′(
Jw
Jx

)

+
1

2
tr

[(
wς̂ ′

I

)(
wς̂ ′

I

)′(
Jww Jwx
Jxw Jxx

)]
+ f(ĉ, J) +

(1− γ)J

2θ
|ξ̂|2
}
. (4.15)

The conditional worst-case probability ξ̂ĉ,ς̂ for given control (ĉ, ς̂) satisfies

ξ̂ĉ,ς̂(x) = − θ

(1− γ)J

(
wς̂ ′

I

)′(
Jw
Jx

)
. (4.16)

The real budget constraint (4.11) under the conditional worst-case proba-

bility Pξ̂
∗
for the given control (ĉ, ς̂) is rewritten as

dW̄t

W̄t
=

{
r̄(Xt) + ς̂(Xt)

′λ̂(Xt)−
ĉ(Xt)

W̄t

}
dt+ ς̂(Xt)

′ dBξ̂
t , (4.17)

where

λ̂(x) = λ̄(x) + ξ̂ĉ,ς̂(x) = λ̄(x)− θ

(1− γ)J

(
wς̂(x)′

I

)′(
Jw
Jx

)
. (4.18)
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Remark 8. In Eq. (4.17), the real market price λ̄(Xt) of risk in the real
budget constraint Eq. (4.11) is replaced with λ̂(Xt), which is the investor
price per unit of investment under the conditional worst-case probability for
a given control. As shown by Remark 7, when ambiguity is not considered,
the price per unit of investment risk is the real market price λ̄(Xt) of risk,
which is common to all investors. By contrast, λ̂(Xt) varies across investors.
Eq. (4.17) shows that ambiguity averse investors value the price per unit of
investment below the real market price of risk under the conditional worst-
case probability.

Henceforth, we refer to the real market price of risk simply as the market
price of risk.

Remark 9. In Eq. (4.17), under the conditional worst-case probability as-
sumed by investors with HREZ utility, the investment control ς̂(Xt), which is
the volatility of the wealth process, is as assumed under the base probability;
however, its price λ̂(Xt) is permanently discounted from the market price
of risk. This implies that investors with HREZ utility assume long-term
stagnation rather than increased volatility as the worst-case scenario.

Substituting ξ̂∗ into the HJB Eq. (4.15) yields

0 = sup
(ĉ,ς̂)∈R+×RN

[
Jt +

(
w
(
r̄(x) + ς̂ ′λ̄(x)

)
− ĉ

−Kx

)′(
Jw
Jx

)

+
1

2
tr

[(
wς̂ ′

I

)(
wς̂ ′

I

)′(
Jww Jwx
Jxw Jxx

)]
+f(ĉ, J)− θ

2(1− γ)J

∣∣∣∣∣
(
wς̂ ′

I

)′(
Jw
Jx

)∣∣∣∣∣
2]
.

(4.19)

Let W̄ ∗ denote the optimal real wealth. Let x∗ = (w∗, x′)′. Moreover, let
ĉ∗(x∗) and ς̂∗(x∗) denote the optimal consumption and investment controls,
respectively. Define the “worst-case probability” and “investor price of risk
under the worst-case probability” as

ξ̂∗(x∗) = − θ

(1− γ)J

(
w∗ς̂∗(x)′

I

)′(
Jw
Jx

)
, (4.20)

λ̂∗(x∗) = λ̄(x)− θ

(
w∗Jw

(1− γ)J
ς̂∗(x) +

Jx
(1− γ)J

)
. (4.21)

Remark 10. In Eq. (4.20), the term w∗ς̂∗(x)Jw+Jx on the indirect utility
process corresponds to the term σ∗ on the utility process V ∗ in the SDE (3.8).
Thus, the worst-case probability ξ̂∗(x∗) in the Markovian consumption-investment
problem is consistent with the worst-case probability ξ∗ in the HREZ utility
functional in Eq. (3.18).
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4.3 A First Expression of the Optimal Robust Consumption-
Investment

Let

U = −w
∗Jww
Jw

+ θ
w∗Jw

(1− γ)J
. (4.22)

We obtain the following lemma.

Lemma 3. Under Assumptions 1–3, the optimal control is given by

ĉ∗(X∗
t ) =

{
βJ−1

w (1− γ)J, if ψ = 1,

βψJ−ψ
w

(
(1− γ)J

) γψ−1
γ−1 , if ψ ̸= 1,

(4.23)

ς̂∗(X∗
t ) =

1

U

(
λ̄(Xt) +

Jxw
Jw

− θJx
(1− γ)J

)
, (4.24)

where J is a solution of the following PDE:

0 =
1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2

− 1

2

(
w∗2Jww − θw2J2

w

(1− γ)J

)−1

|π(x)|2 + r̄(x)w∗Jw − (Kx)′Jx

+

β
{
(1− γ)(log ĉ∗ − 1)− log

(
(1− γ)

)}
J, if ψ = 1,

1

ψ − 1
ĉ∗Jw − β(1− γ)

1− ψ−1
J, if ψ ̸= 1,

(4.25)

where

π(x) = −w∗Jw

(
λ̄(x) +

Jxw
Jw

− θJx
(1− γ)J

)
. (4.26)

Proof. See Appendix C.

Remark 11. Strictly speaking, (ĉ∗(X∗
t ), ς̂

∗(Xt)) is only a candidate for op-
timal control, because we do not provide a verification theorem. However,
we tentatively call this optimal control in this study.

It follows from Eqs. (4.12) and (4.24), optimal robust portfolio Φ∗
t satis-

fies

Σ(Xt)
′Φ∗
t − σp(Xt) =

1

U

(
λ̄t +

Jxw
Jw

− θ
Jx

(1− γ)J

)
. (4.27)

Thus, from Eq. (4.4), we decompose the optimal robust portfolio into the
following four terms:

Φ∗
t =

1

U
Σ(Xt)

′−1λt +
1

U
Σ(Xt)

′−1Jxw
Jw

− 1

U
Σ(Xt)

′−1 θJx
(1− γ)J

+

(
1− 1

U

)
Σ(Xt)

′−1σp(Xt). (4.28)
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The first term is the myopic demand. The fourth term insures inflation-
deflation risk. Following Kikuchi and Kusuda (2024a), we call the fourth
term the “inflation-deflation hedging demand,” as presented by Brennan
and Xia (2002), Sangvinatsos and Wachter (2005), Batbold et al. (2022),
and Kikuchi and Kusuda (2024a).

Remark 12. Note that the indirect utility function depends on both relative
risk aversion and ambiguity aversion because the PDE (4.25) depends not
only on relative risk aversion but also on relative ambiguity aversion. Thus,
the second and third terms in Eq. (4.28) are related to the intertemporal un-
certainty on marginal indirect utility and indirect utility, respectively. The
second term hedges against intertemporal uncertainty in marginal indirect
utility due to state changes, whereas the third term hedges against intertem-
poral uncertainty in indirect utility due to state changes. Therefore, we call
the second term the “intertemporal marginal indirect utility hedging demand”
and the third term the “intertemporal indirect utility hedging demand.” Note
that intertemporal indirect utility hedging demand disappears when θ = 0.

From the PDE (4.25), we infer that the indirect utility function takes
the form in Eq. (4.29):

J(x) =


w1−γ

1− γ
G(x), if ψ = 1,

w1−γ

1− γ

(
G(x)

) 1−γ
ψ−1 , if ψ ̸= 1.

(4.29)

Thus, the partial derivatives of J with respect to w are given by Eq. (B.1)
in Appendix B.

Remark 13. Eq. (4.18) is rewritten as

λ̂(x∗) = λ̄(x)− θ

(
w∗Jw

(1− γ)J
ς̂∗(x∗) +

Jx
(1− γ)J

)
. (4.30)

The second term represents the discount from the market price of risk to
λ̂(x∗). Eq. (4.30) shows that the discount is proportional to the investor’s
ambiguity aversion. Substituting Eq. (B.1) into Eq. (4.30) yields

λ̂(x∗) = λ̄(x)− θ

(
ς̂∗(x∗) +

Jx
(1− γ)J

)
. (4.31)

Eq. (4.31) shows that the discount from the market price of risk to λ̂(x∗) in-
creases with investment ς̂(x∗). As the discount from the market price of risk
increases with relative ambiguity aversion and investment, these combined
effects suppress the ambiguity averse investor’s optimal investment.
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Substituting Eq. (B.1) into Eq. (4.22), we obtain

U = γ + θ. (4.32)

Batbold et al. (2022) call the sum of relative risk aversion and relative am-
biguity aversion “relative uncertainty aversion.” Given that the reciprocal
of relative risk aversion is called relative risk tolerance, they also call the
reciprocal of relative uncertainty aversion “relative uncertainty tolerance.”

Remark 14. Eq. (4.32) indicates that U−1 is the relative uncertainty toler-
ance; Eq. (4.24) shows that the optimal investment is proportional to relative
uncertainty tolerance.

The partial derivatives of J with respect to x are given by Eq. (B.2) in
Appendix B. Substituting the derivatives of J into Eq. (4.21), the investor
price of risk under the worst-case probability is given by

λ̂∗(x∗) =
γ

γ + θ
λ̄(x) +

θ

γ + θ
η∗(x), (4.33)

where

η∗(x) =


1

γ − 1

Gx(x)

G(x)
, if ψ = 1,

− 1

ψ − 1

Gx(x)

G(x)
, if ψ ̸= 1.

(4.34)

We refer to η∗(Xt) as the “investor hedging value of intertemporal uncer-
tainty.”

Remark 15. Eq. (4.33) shows that the investor price λ̂∗(x∗) of risk under
the worst-case probability depends only on x and not on w∗. This result
follows from the homotheticity of HREZ utility. Eq. (4.33) also shows that
λ̂∗(x∗) is the weighted average of the market price of risk and the investor
hedging value of intertemporal uncertainty. The weights are the ratios of
risk aversion to uncertainty aversion, and ambiguity aversion to uncertainty
aversion, respectively. The optimal investor price of uncertainty converges
to the market price of risk in the case of Epstein-Zin utility (θ ↘ 0), and to
the investor hedging value of intertemporal uncertainty as relative ambiguity
aversion diverges to infinity.

4.4 A Second Expression of the Optimal Robust Control

We obtain the following proposition.

Proposition 1. Under Assumptions 1–3, the optimal wealth, consumption,
and investment for the problem (4.13) satisfy Eqs. (4.35), (4.36), and (4.37),
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respectively.

W̄ ∗
t = W̄0 exp

(∫ t

0

(
r̄(Xs) + ς̂∗(Xs)

′λ̄s −
1

2
|ς̂∗(Xs)|2 − č(Xs)

)
ds

+

∫ t

0
ς̂∗(Xs)

′ dBs

)
, (4.35)

ĉ∗(X∗
t ) =

βW̄
∗
t , if ψ = 1,

βψ

G(Xt)
W̄ ∗
t , if ψ ̸= 1,

(4.36)

ς̂∗(X∗
t ) =

1

γ + θ
λ̄(Xt) +

(
1− 1

γ + θ

)
η∗(Xt), (4.37)

where G is a solution of the following PDE:

1. The unit EIS case:

1

2
tr

[
Gxx
G

]
+

θ

2(γ − 1)(γ + θ)

∣∣∣∣GxG
∣∣∣∣2 − (Kx+

γ + θ − 1

γ + θ
λ̄(x)

)′ Gx
G

−β logG−
(

γ − 1

2(γ + θ)
|λ̄(x)|2 + (γ − 1)r̄(x) + β(log β − 1)(γ − 1)

)
= 0.

(4.38)

2. The general case:

1

2
tr

[
Gxx
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2−(Kx+(1− (γ+θ)−1

)
λ̄(x)

)′Gx
G

+
βψ

G
+

ψ − 1

2(γ + θ)
|λ̄(x)|2 + (ψ − 1) r̄(x)− βψ = 0. (4.39)

Proof. See Appendix D.

Remark 16. Eq. (4.37) shows that the optimal investment is the weighted
average of the market price of risk and the investor hedging value of in-
tertemporal uncertainty. The weights are the relative risk tolerance and one
minus the relative risk tolerance, respectively. Interestingly, the optimal in-
vestment and investor price of risk under the worst-case probability are both
the weighted averages of the market price of risk and the investor hedging
value of intertemporal uncertainty.

We obtain the optimal robust portfolio using Eq. (4.12). The optimal
robust portfolio is

Φ∗
t =

1

γ + θ
Σ(Xt)

′−1λt +

(
1− 1

γ + θ

)
Σ(Xt)

′−1η∗(Xt)

+

(
1− 1

γ + θ

)
Σ(Xt)

′−1σp(Xt). (4.40)
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Remark 17. The intertemporal marginal indirect utility hedging demand
and intertemporal indirect utility hedging demand in Eq. (4.28) are integrated
into the second term in Eq. (4.40). Hereafter, we refer to the second term
in Eq. (4.40) as the “intertemporal uncertainty hedging demand.”

5 Robust CAPMs

In this section, we assume the general case, that is, ψ ̸= 1 and derive the
robust CAPMs and equilibrium risk-free rate.

5.1 Basic Setting

We make the following assumption.

Assumption 4. In equilibrium, the following holds:

1. The representative agent’s utility is the HREZ utility given by Eq. (4.1).

2. The representative agent invests in S1, · · · , SN . Then, Φt and Σ(Xt)
are expressed as follows:

Φt =

Φ1
t
...
ΦNt

 , Σ(Xt) =

 (σ1 +Σ1Xt)
′

...
(σN +ΣNXt)

′

 . (5.1)

3. The total dividends DM of the market portfolio are given by

DM
t =

(
δ0M + δ′MXt +

1

2
X ′
t∆MXt

)
exp

(
σ0M t+ σ′MXt +

1

2
X ′
tΣMXt

)
.

(5.2)

5.2 Robust CAPMs

Let W and SM denote the nominal wealth and market capitalization of
the market portfolio, respectively. The representative agent’s optimal port-
folio becomes the market portfolio,that is, W ∗ = SM and the representa-
tive agent’s optimal nominal consumption becomes the aggregate nominal
consumption. This is equal to the total dividends of the market portfo-
lio, that is, ptĉ

∗(X∗
t ) = DM

t . Furthermore, the investor price of risk un-
der the worst-case probability becomes the “market price of risk under the
worst-case probability.” Let µ̄ct and σ̄

c
t denote the expected growth rate and

volatility of aggregate consumption, respectively. Let S̄k =
Sk

p
, D̄k =

Dk

p
,

σ̄M = σM − σp and σ̄k = σk − σp, where k = 1, · · · , N .
In this section, the process σ̄W (Xt), etc., expressed as a function of the

state, is abbreviated as σ̄Wt , etc. Further, ς̂∗ is referred to as σ̄W because the
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optimal investment control is the volatility of W̄ ∗. Note that from Eq. (4.36),
the following equation holds.

Gx
G

= σ̄W − σ̄c. (5.3)

We obtain the following proposition.

Proposition 2. Under Assumptions 1 and 4, the equilibrium real return
rate on the k-th stock satisfies the following:

Under the probability P:

Et

[
dS̄kt + D̄k

t dt

S̄kt

]
= r̄tdt+ (σ̄k)′λ̄tdt, (5.4)

where λ̄ and r̄ are the equilibrium real market price of risk (MPR) and the
equilibrium real risk-free rate, respectively, and (λ̄, r̄) is given by the following
two models:

1. Robust ICAPM:

λ̄t = (γ + θ)σ̄Wt +
(
1− (γ + θ)

)(
− 1

ψ − 1

Gx
G

)
, (5.5)

r̄t =
1

1− ψ

{
−βψ +

ψ − 1

2(γ + θ)
|λ̄t|2 −

(
1− (γ + θ)−1

)
λ̄′t
Gx
G

+
1

2
tr

[
Gxx
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2 − (KXt)

′Gx
G

+
βψ

G

}
. (5.6)

2. Robust two-factor CAPM:

λ̄t = −γ + θ − 1

ψ − 1
σ̄ct +

(γ + θ)ψ − 1

ψ − 1
σ̄Mt , (5.7)

r̄t = β+ψ−1µ̄ct +
1

2

(γ + θ)ψ−1 − 1

ψ − 1
|σ̄ct |2−

1

2

(γ + θ)ψ − 1

ψ − 1
|σ̄Mt |2. (5.8)

Under the worst-case probability Pξ̂
∗
:

Eξ̂
∗

t

[
dS̄kt + D̄k

t dt

S̄kt

]
= r̄tdt+ (σ̄kt )

′λ̄∗tdt, (5.9)

where λ̄∗t is the equilibrium real MPR under the worst-case probability, given
by the following two models:

1. Robust ICAPM:

λ̄∗t = γσ̄Wt + (1− γ)

(
− 1

ψ − 1

Gx
G

)
. (5.10)
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2. Robust two-factor CAPM:

λ̄∗t = − γ − 1

ψ − 1
σ̄ct +

γψ − 1

ψ − 1
σ̄Mt . (5.11)

Proof. See Appendix E.1.

Remark 18. Maenhout (2004) derives the CAPM based on HREZ utility.
However, there is no state process in his security market model and we obtain
σ̄c = ς̂∗ = σ̄M from Eq. (5.3) because Gx = 0. Thus, the two-factor CAPM
(5.7) and the equilibrium risk-free rate (5.8) are simplified to the following
single-factor CAPM.6 as shown by Maenhout (2004).

λ̄ = (γ + θ)σ̄c, (5.12)

r̄ = β + ψ−1µ̄c − 1

2
(γ + θ)(ψ−1 + 1)|σ̄c|2. (5.13)

This demonstrates that the incorporation of the state process into the security
market model, along with the generalization of utility, is essential not only
in the consumption-investment problem, but also in the capital asset pricing
problem.

5.3 Equity Premium Puzzle and Risk-free Rate Puzzle

We consider the the CAPM in the case of Epstein-Zin utility. Let λ̄EZ and
r̄EZ denote the equilibrium MPR and the equilibrium real risk free rate in
the case of Epstein-Zin utility (i.e., θ = 0). Then, Eqs. (5.7) and (5.8) are
expressed as

λ̄EZt = − γ − 1

ψ − 1
σ̄ct +

γψ − 1

ψ − 1
σ̄Mt , (5.14)

r̄EZt = β + ψ−1µ̄ct +
1

2

γψ−1 − 1

ψ − 1
|σ̄ct |2 −

1

2

γψ − 1

ψ − 1
|σ̄Mt |2. (5.15)

Eq. (5.14) is the two-factor CAPM shown by Duffie and Epstein (1992b),
which is a linear combination of the consumption-based CAPM and market
portfolio-based CAPM. Note λ̄EZt = λ̄∗t , that is, the equilibrium real MPR in
the case of Epstein-Zin utility is equal to that under the worst-case probabil-
ity in the case of HREZ utility. Weil (1989) shows that the CAPM beased on
the Epstein-Zin utility cannot explain either the high market price of risk
or the low-risk free rate observed in securities markets. From Eqs. (5.7),
(5.14), (5.8), and (5.15), we obtain

λ̄t − λ̄EZt =
θ

ψ − 1

(
ψσ̄Mt − σ̄ct

)
, (5.16)

r̄t − r̄EZt = − θ

2(ψ − 1)

(
ψ|σ̄Mt |2 − ψ−1|σ̄ct |2

)
. (5.17)

6Note that Maenhout (2004) does not consider inflation, so his CAPM equates nominal
and real prices.
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Given that the market portfolio return rate is more volatile than the growth
rate of aggregate consumption, we assume σ̄M > σ̄c and |σ̄M |2 > |σ̄c|2.
Then, as ψ > 1, λ̄t > λ̄EZt , and r̄t < r̄EZt . Therefore, the robust CAPMs can
contribute to solving both the equity premium puzzle (Mehra and Prescott
(1985)) and the risk-free rate puzzle (Weil (1989)).

5.4 Robust CAPMs based on Nominal Prices

Typically, empirical analyses of CAPMs use data on nominal prices rather
than real prices. Therefore, we demonstrate robust CAPMs based on nom-
inal prices. Let σW = σ̄W + σp and σc = σ̄c + σp. Let µct denote the
nominal expected growth rate of aggreagte consumption. Then, note that
the following equation holds.

µ̄c = µc − µp − (σ̄c)′σp = µc − ι− (σc)′σp + |σp|2. (5.18)

Proposition 3. Under Assumptions 1 and 4, the equilibrium nominal re-
turn rate on the k-th stock satisfies the following:

Under the probability P:

Et

[
dSkt +Dk

t dt

Skt

]
= rtdt+ (σkt )

′λtdt, (5.19)

where λt and rt are the equilibrium nominal market price of risk and the
equilibrium nominal risk-free rate, respectively, and (λ, r) is given by the
following two models:

1. Robust ICAPM with inflation-deflation factor:

λt = (γ+θ)σWt +
(
1−(γ+θ)

)(
− 1

ψ − 1

Gx
G

)
+
(
1−(γ+θ)

)
σpt , (5.20)

rt = µpt − λ′tσ
p
t +

1

1− ψ

{
−βψ +

ψ − 1

2(γ + θ)
|λt − σpt |2

−
(
1− (γ + θ)−1

)
(λt − σpt )

′Gx
G

+
1

2
tr

[
Gxx
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2 − (KXt)

′Gx
G

+
βψ

G

}
. (5.21)

2. Robust three-factor CAPM:

λt = −γ + θ − 1

ψ − 1
σct +

(γ + θ)ψ − 1

ψ − 1
σMt +

(
1− (γ + θ)

)
σpt , (5.22)

rt = β + ψ−1µct +
1

2

(γ + θ)ψ−1 − 1

ψ − 1
|σct |2 −

1

2

(γ + θ)ψ − 1

ψ − 1
|σMt |2

+(1−ψ−1)µpt − (γ+ θ− 1)ψ−1(σct )
′σpt +

1

2
(γ+ θ− 2)(1−ψ−1)|σpt |2.

(5.23)
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Under the worst-case probability Pξ̂
∗
:

Eξ̂
∗

t

[
dSkt +Dk

t dt

Skt

]
= rtdt+ (σkt )

′λ∗tdt, (5.24)

where λ∗t is the equilibrium nominal market price of risk under the worst-case
probability, given by by the following two models:

1. Robust ICAPM with inflation-deflation factor:

λ∗t = γσWt + (1− γ)

(
− 1

ψ − 1

Gx
G

)
+ (1− γ)σpt . (5.25)

2. Robust three-factor CAPM:

λ∗t = − γ − 1

ψ − 1
σct +

γψ − 1

ψ − 1
σMt + (1− γ)σpt . (5.26)

Proof. See Appendix E.2.

The equilibrium real risk-free rate (5.23) is decomposed into the sum of
seven terms:the subjective discount rate, expected growth rate of aggregate
consumption, variance of the growth rate of aggregate consumption, vari-
ance of the market portfolio return rate, expected inflation rate, covariance
between the growth rate of aggregate consumption and the inflation rate,
and variance of the inflation rate.

6 Analytical Expression of the Optimal Robust
Consumption-Investment

First, for the unit EIS case, that is, ψ = 1, we derive the optimal solution.
Second, for the general case, we derive an approximate optimal solution.
Finally, we derive a testable ICAPM.

6.1 Optimal Solution for the Unit EIS Case

An analytical solution of the PDE (4.38) is expressed as:

G(x) = exp

(
a0 + a′x+

1

2
x′Ax

)
, (6.1)

where A is a symmetric matrix.
We obtain the following theorem.
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Theorem 1. Under Assumptions 1–3, the indirect utility function, optimal
consumption, and optimal investment for problem (4.13) satisfy Eqs. (6.2),
(4.36), and (6.3), respectively:

J(X∗
t ) =

W̄ ∗1−γ
t

1− γ
exp

(
a0 + a′Xt +

1

2
X ′
tAXt

)
, (6.2)

ς̂∗(Xt) =
1

γ + θ
(λ̄+ Λ̄Xt) +

(
1− 1

γ + θ

)(
1

γ − 1
(a+AXt)

)
, (6.3)

where (A, a, a0) is a solution of the simultaneous Eqs. (6.4)–(6.6):

γ(γ + θ − 1)

(γ − 1)(γ + θ)
A2 −

(
K +

γ + θ − 1

γ + θ
Λ̄

)′
A−A

(
K +

γ + θ − 1

γ + θ
Λ̄

)
− (γ − 1)

(
1

γ + θ
Λ̄′Λ̄ + R̄

)
= 0, (6.4)(

γ(γ + θ − 1)

(γ − 1)(γ + θ)
A−

(
K +

γ + θ − 1

γ + θ
Λ̄

))′
a

−
(
γ + θ − 1

γ + θ
Aλ̄+

γ − 1

γ + θ
Λ̄′λ̄+ (γ − 1)ρ̄

)
= 0, (6.5)

βa0 =
1

2
tr[A] +

γ(γ + θ − 1)

2(γ − 1)(γ + θ)
|a|2 − γ + θ − 1

γ + θ
λ̄′a

− γ − 1

2γ(γ + θ)
|λ̄|2 − γ − 1

γ
ρ̄0 −

β(γ − 1)

γ
(log β − 1). (6.6)

Proof. See Appendix F.1.

Eq. (4.36) indicates that the optimal consumption-wealth ratio is con-
stant and independent of the state process, which is unrealistic. However,
this result implies that the optimal consumption-wealth ratio is stable if
the EIS does not deviate from one and the state process does not deviate
significantly from zero. In the next section, we consider the general case
in which a nonhomogeneous term appears in the PDE for indirect utility.
Then, we use a loglinear approximation based on the stability of the optimal
consumption-wealth ratio to derive an approximate solution.

6.2 Approximate Optimal Solution for the General Case

Next, for the general case, that is, ψ ̸= 1, we derive an approximate opti-
mal solution by applying the loglinear approximation method presented by
Campbell and Viceira (2002) to our quadratic security market model. In
the PDE (4.39), both nonlinear and nonhomogeneous terms appear. From

Eq. (4.36), the nonhomogeneous term
βψ

G
is expressed as

βψ

G
=
ĉ∗

w
. Con-

sidering that the optimal consumption-wealth ratio is stable, Campbell and
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Viceira (2002) make a loglinear approximation of the nonhomogeneous term
and derive an approximate analytical solution. We apply the loglinear ap-
proximation to the nonhomogeneous term as follows:

1

G(x)
≈ g0 − g1 logG(x), (6.7)

where

g0 = g1(1− log g1), (6.8)

g1 = exp
(
−E
[
lim
t→∞

logG(Xt)
])
. (6.9)

In the PDE (4.39), approximating the nonhomogeneous term by Eq. (6.7)
yields the following approximate PDE:

1

2
tr

[
Gxx
G

]
− ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2 −(Kx+ (1− (γ + θ)−1

)(
λ̄+ Λ̄x

))′Gx
G

−βψg1 logG+βψg0+
ψ − 1

2(γ + θ)

∣∣λ̄+ Λ̄x
∣∣2+(ψ−1)

(
ρ̄0 + ρ̄′x+

1

2
x′R̄x

)
−βψ = 0.

(6.10)

The optimal control based on the approximate PDE (6.10) is called the
approximate optimal control and is denoted by (c̃∗(X∗

t ), ς̃
∗(Xt)). We obtain

the following proposition.

Theorem 2. Under Assumptions 1–3, the approximate optimal consump-
tion and investment for problem (4.13) satisfy Eqs. (6.11) and (6.12), re-
spectively:

c̃∗(X∗
t ) = W̃ ∗

t exp

[
−
(
a0 + a′Xt +

1

2
X ′
tAXt

)]
, (6.11)

ς̃∗(Xt) =
1

γ + θ
(λ̄+ Λ̄Xt) +

(
1− 1

γ + θ

)(
− 1

ψ − 1
(a+AXt)

)
, (6.12)

where (A, a, a0) is a solution of the simultaneous Eqs. (6.13)–(6.15):

−1− (γ + θ)−1

ψ − 1
A2−

(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
A−A

(
K +

(
1− (γ + θ)−1

)
Λ̄
)

− βψg1A+ (ψ − 1)
(
(γ + θ)−1Λ̄′Λ̄ + R̄

)
= 0, (6.13)

− 1− (γ + θ)−1

ψ − 1
Aa−K′a−

(
1− (γ + θ)−1

)
(Aλ̄+ Λ̄′a)

− βψg1a+ (ψ − 1)
(
(γ + θ)−1Λ̄′λ̄+ ρ̄

)
= 0, (6.14)
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1

2
tr[A]− 1− (γ + θ)−1

2(ψ − 1)
|a|2 −

(
1− (γ + θ)−1

)
λ̄′a

+ βψg1(1− a0 − log g1) + (ψ − 1)

(
(γ + θ)−1

2
|λ̄|2 + ρ̄0

)
− βψ = 0, (6.15)

where g1 is expressed by .

g1 = exp

(
−a0 −

1

2
tr
[(
K +K′)−1

A
])

. (6.16)

Furthermore, the approximate optimal portfolio Φ̃∗
t is given by

Φ̃∗
t =

1

γ + θ
Σ(Xt)

′−1
(
λ+ΛXt

)
+

(
1− 1

γ + θ

)
Σ(Xt)

′−1

(
− 1

ψ − 1

)(
a+AXt

)
+

(
1− 1

γ + θ

)
Σ(Xt)

′−1
(
σp +ΣpXt

)
. (6.17)

Proof. See Appendix F.2.

6.3 A Testable Robust Three-Factor ICAPM

The robust three-factor ICAPM (5.20) is untestable because it contains the
unknown function G. Finally, from Eqs. (5.20) and (6.12), we obtain a
testable robust three-factor ICAPM:

λ(Xt) = (γ+θ)σM (Xt)+
(
1−(γ+θ)

)(
− 1

ψ − 1
(a+AXt)

)
+
(
1−(γ+θ)

)
σp(Xt).

(6.18)

7 Conclusion

We studied the consumption-investment problem based on HREZ utility
under the quadratic security market model that satisfies the stylized facts.
First, we proved that HREZ utility is SDU under certain integrability con-
ditions by modifying the incorrect proof in Skiadas (2003). Then, following
Duffie and Epstein (1992a), we showed that HREZ utility is continuous,
consistent, strictly increasing, risk averse, and homothetic. Second, for the
infinite-time consumption-investment problem for the infnite-lived investor
with HREZ utility, we derived the conditional worst-case probability for a
given consumption and investment. We compared the budget constraint
under the conditional worst-case probability with that under the base prob-
ability. We found that the volatility of wealth is invariant, whereas the
market price of risk in the return on wealth is replaced by the investor
price of risk under the conditional worst-case probability discounted from
the market price of risk. Given that the discount from the market price of
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risk is permanent, the implication is that investors with HREZ utility as-
sume long-term stagnation rather than increased volatility as the worst-case
scenario.

Third, we derived the optimal consumption and investment, both of
which depend on the unknown function that comprises the indirect utility
function. We demonstrated that the optimal investment is the weighted
average of the market price of risk and the investor hedging value of in-
tertemporal uncertainty. The weights are the relative risk tolerance and one
minus the relative risk tolerance, respectively. We also demonstrated that
the investor price of risk under the worst-case probability is the weighted
average of the market price of risk and the investor hedging value of intertem-
poral uncertainty. The weights are the ratios of risk aversion to uncertainty
aversion, and ambiguity aversion to uncertainty aversion, respectively. In
addition, the optimal investment and investor price of risk under the worst-
case probability are both the weighted averages of the market price of risk
and the investor hedging value of intertemporal uncertainty.

Fourth, we derived robust versions of the intertemporal CAPM (ICAPM)
based on Epstein-Zin utility and of the two-factor CAPM. We showed that
the equilibrium market price of risk under the worst-case probability is con-
sistent with the equilibrium market price of risk based on Epstein-Zin utility.
Furthermore, we demonstrated that i) the equilibrium market price of risk
based on HREZ utility is higher than that based on Epstein-Zin utility, and
ii) the equilibrium risk-free rate based on HREZ utility is lower than that
based on Epstein-Zin utility. Therefore, the robust CAPMs can contribute
to solving both the equity premium puzzle and risk-free rate puzzles. Finally,
we derived the exact solution of the nonlinear PDE for the unit EIS case
and a loglinear approximate solution of the PDE for the general case. We
then presented the approximate optimal portfolio and approximate testable
ICAPM based on a loglinear approximate solution.

Cochrane (2001) presents two approaches to solving the equity premium
and risk-free rate puzzles. One is to model uninsured idiosyncratic risk and
market frictions, and the other is to modify the representative agent’s utility.
We believe that our quadratic security market model and HREZ utility are
promising, because the quadratic model explains the stylized facts in the
securities markets and HREZ utility incorporates Knightean uncertainty. To
address both puzzles, we intend to incorporate the following into our model:
i) uninsured idiosyncratic risk; ii) “near-singularity risk” in the variance-
covariance matrix of asse returns that accounts for transaction costs; iii)
nontradable human capital in wealth; iv) “homothetic generalized robust
utility” in which relative ambiguity aversion depends on the source of risk.
i), ii), and iii) are the first approach, and iv) is the second. Proposing
such robust CAPMs that can solve both the equity premium puzzle and the
risk-free rate puzzle is our future research.
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A Quadratic Security Market Model

A.1 Regularity Conditions on Parameters

• K +K′ and R̄ are positive-definite.

• (ρ0, ρ,R) and (δ0j , δj ,∆j) satisfy
7

ρ0 =
1

2
ρ′R−1ρ, (A.1)

δ0k =
1

2
δ′k∆

−1
j kδj . (A.2)

A.2 Parameters on Return Rates of Securities

1. The default-free bond with time τ to maturity: (Σ(τ), σ(τ)) in Eq. (2.9)
is a solution to the following system of ODEs.

dΣ(τ)

dτ
= Σ(τ)2 − (K + Λ)′Σ(τ)− Σ(τ)(K + Λ)−R (A.3)

dσ(τ)

dτ
= −(K + Λ− Σ(τ))′σ(τ)− (Σ(τ)λ+ ρ), (A.4)

with (Σ, σ)(0) = (0, 0).

2. The default-free inflation-indexed bond with time τ to maturity: (Σ(τ), σ(τ))
in Eq. (2.10) is a solution to the following system of ODEs.

dΣ̄q(τ)

dτ
= Σ̄q(τ)

2 − (K + Λ̄)′Σ̄q(τ)− Σ̄q(τ)(K + Λ̄)− R̄, (A.5)

dσ̄q(τ)

dτ
= −(K + Λ̄− Σ̄q(τ))

′σ̄q(τ)− (Σ̄q(τ)λ̄+ ρ̄), (A.6)

with (Σ̄q, σ̄q)(0) = (0, 0).

3. The k-th index and the market portfolio: In Eq. (2.11), Σk is a solution
to Eq. (A.7) and σk is given by Eq. (A.8).

0 = Σ2
k − (K + Λ)′Σk − Σk(K + Λ) +∆k −R, (A.7)

σk = (K + Λ− Σk)
′−1(δk − ρ− Σkλ), (A.8)

B Derivatives of the Indirect Utility Function

The partial derivatives of J with respect to w are given by

wJw = (1− γ)J,

w2Jww = −γ(1− γ)J.
(B.1)

7Conditions (A.1) and (A.2) ensure that the nominal risk-free rate and divided are
non-negative, respectively.
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The partial derivatives of J with respect to x are given by

Jx =


J
Gx
G
, if ψ = 1,

1− γ

ψ − 1
J
Gx
G
, if ψ ̸= 1,

wJxw =


(1− γ)J

Gx
G
, if ψ = 1,

(1− γ)2

ψ − 1
J
Gx
G
, if ψ ̸= 1,

Jxx =


J

(
Gx
G

G′
x

G
+
Gxx
G

)
, if ψ = 1,

1− γ

ψ − 1
J

(
2− γ − ψ

ψ − 1

Gx
G

G′
x

G
+
Gxx
G

)
, if ψ ̸= 1.

(B.2)

C Proof of Lemma 3

C.1 Proof for the Unit EIS Case

Assume ψ = 1. Substituting f(ct, J) = β(1 − γ)J log ct − βv log
(
(1 − γ)J

)
into the HJB Eq. (4.19) yields

sup
(ĉ,ς̂)∈R+×RN

[
Jt +

(
w
(
r̄(x) + ς̂ ′λ̄(x)

)
− ĉ

−Kx

)′(
Jw
Jx

)

+
1

2
tr

[(
wς̂ ′

I

)(
wς̂ ′

I

)′(
Jww Jwx
Jxw Jxx

)]
− θ

2(1− γ)J

∣∣∣∣∣
(
wς̂ ′

I

)′(
Jw
Jx

)∣∣∣∣∣
2

+ β(1− γ)J log ĉ− βJ log
(
(1− γ)J

)]
= 0. (C.1)

It is evident that the optimal control (ĉ∗, ς̂∗) in the HJB Eq. (C.1) satisfies
Eqs. (4.23) and (4.24). The consumption-related terms in the HJB Eq. (C.1)
are computed as

−ĉ∗Jw+β(1−γ)J log ĉ∗−βJ log
(
(1−γ)J

)
= βJ

{
(1−γ)(log ĉ∗−1)−log

(
(1−γ)J

)}
.

(C.2)
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The investment-related terms in the HJB Eq. (C.1) are computed as

wJwλ̄(x)
′ς̂∗ +

1

2
tr

[(
w(ς̂∗)′

I

)(
w(ς̂∗)′

I

)′(
Jww Jwx
Jxw Jxx

)]

− θ

2(1− γ)J

∣∣∣∣∣
(
w(ς̂∗)′

I

)′(
Jw
Jx

)∣∣∣∣∣
2

=
1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

|π(x)|2

2w2

(
Jww − θJ2

w

(1− γ)J

) , (C.3)

where π(x) is given by Eq. (4.26).
Substituting the optimal control (4.23) and (4.24) into the HJB Eq. (C.1)

and using Eqs. (C.2) and (C.3), we obtain the PDE (4.25).

C.2 Proof for the General Case

Assume ψ ̸= 1. Substituting f(ĉ, J) =
β

1− ψ−1
ĉ1−ψ

−1

t

(
(1 − γ)J

)1− 1−ψ−1

1−γ −

β(1− γ)

1− ψ−1
J into the HJB Eq. (4.19) yields

sup
(ĉ,ς̂)∈R+×RN

[(
w
(
r̄t + ς̂ ′λ̄t

)
− ĉ

−Kx

)′(
Jw
Jx

)

+
1

2
tr

[(
wς̂ ′

I

)(
wς̂ ′

I

)′(
Jww Jwx
Jxw Jxx

)]
− θ

2(1− γ)J

∣∣∣∣∣
(
wς̂ ′

I

)′(
Jw
Jx

)∣∣∣∣∣
2

+
β

1− ψ−1
ĉ1−ψ

−1(
(1− γ)J

)1− 1−ψ−1

1−γ − β(1− γ)

1− ψ−1
J

]
= 0. (C.4)

The optimal control (ĉ∗, ς̂∗) in the HJB Eq. (C.4) satisfies Eqs. (4.23) and
(4.24). The consumption-related terms in the HJB Eq. (C.4) are computed
as

−ĉ∗Jw+f(ĉ∗, J) = ĉ∗
(
−Jw +

1

1− ψ−1
Jw

)
−β(1− γ)

1− ψ−1
J =

1

ψ − 1
ĉ∗Jw−

β(1− γ)

1− ψ−1
J.

(C.5)
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The investment-related terms in the HJB Eq. (C.4) are computed as

wJwλ̄(x)
′ς̂∗ +

1

2
tr

[(
w(ς̂∗)′

I

)(
w(ς̂∗)′

I

)′(
Jww Jwx
Jxw Jxx

)]

− θ

2(1− γ)J

∣∣∣∣∣
(
w(ς̂∗)′

I

)′(
Jw
Jx

)∣∣∣∣∣
2

=
1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

(
w2Jww − θ(wJw)

2

(1− γ)J

)−1

|π(x)|2, (C.6)

where π(x) is given by Eq. (4.26).
Substituting the optimal control (4.23) and (4.24) into the HJB Eq. (C.4)

and using Eqs. (C.5) and (C.6), we obtain the PDE (4.25).

D Proof of Proposition 1

D.1 Proof for the Unit EIS Case

Assume ψ ̸= 1. The optimal consumption (4.36) immediately follows from
Eq. (4.23). Eq. (4.26) is rewritten as

π(x) = J

(
(γ − 1)λ̄(x) + (γ + θ − 1)

Gx(x)

G(x)

)
. (D.1)

Inserting Eqs. (4.32) and the derivatives of J into Eq. (4.24), we obtain the
optimal investment (4.37). From Eq. (D.1) and the derivatives of J , the first
to third terms in the PDE (4.25) are calculated as

1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

|π(x)|2

2w2

(
Jww − θJ2

w

(1− γ)J

)
=
1

2
J

(
tr

[
Gx
G

G′
x

G
+
Gxx
G

]
+

θ

γ − 1

∣∣∣∣GxG
∣∣∣∣2 − 1

(γ − 1)(γ + θ)

∣∣∣∣(γ − 1)λ̄(x) + (γ + θ − 1)
Gx
G

∣∣∣∣2)
=
1

2
J

(
tr

[
Gxx
G

]
− γ − 1

γ + θ
|λ̄(x)|2 − 2(γ + θ − 1)

γ + θ
λ̄(x)′

Gx
G

+

(
1 +

θ

γ − 1
− (γ + θ − 1)2

(γ − 1)(γ + θ)

) ∣∣∣∣GxG
∣∣∣∣2)

=J

(
1

2
tr

[
Gxx
G

]
− γ − 1

2(γ + θ)
|λ̄(x)|2 − γ + θ − 1

γ + θ
λ̄(x)′

Gx
G

+
θ

2(γ − 1)(γ + θ)

∣∣∣∣GxG
∣∣∣∣2).

(D.2)

The fourth and fifth terms in the PDE (4.25) are computed as

r̄(x)wJw − (Kx)′Jx = J

(
−(γ − 1)r̄(x)− (Kx)′Gx

G

)
. (D.3)
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The sixth term in the PDE (4.25) is calculated from Eq. (4.36) as

βJ
{
(1− γ)(log ĉ∗ − 1)− log

(
(1− γ)J

)}
=βJ

{
(1− γ)(log β + logw − 1)−

(
(1− γ) logw + logG

)}
=βJ

(
(1− γ)(log β − 1)− logG

)
.

(D.4)

Substituting Eqs. (D.2)–(D.4) into the PDE (4.25) and dividing by J yields
the PDE (4.38).

D.2 Proof for the General Case

Assume ψ ̸= 1. From Eq. (4.23), the optimal consumption (4.36) is calcu-
lated as

ĉ∗ = βψ
(
(1− γ)J

w

)−ψ (
(1− γ)J

) γψ−1
γ−1 = βψwψ

(
w1−γG

1−γ
ψ−1

)ψ−1
γ−1

= βψ
w

G
.

(D.5)
Eq. (4.26) is rewritten as

π(x) = (γ − 1)J

(
λ̄(x) +

γ + θ − 1

1− ψ

Gx(x)

G(x)

)
. (D.6)

Inserting Eq. (4.32) and the derivatives of J into Eq. (4.24), we obtain the
optimal investment (4.37). From Eq. (D.6) and the derivatives of J , the first
to third terms in the PDE (4.25) are calculated as

1

2
tr [Jxx]−

θ

2(1− γ)J
|Jx|2 −

1

2

(
w2Jww − θ(wJw)

2

(1− γ)J

)−1

|π(x)|2

=J

{
1− γ

2(ψ − 1)
tr

[
2− γ − ψ

ψ − 1

Gx
G

G′
x

G
+
Gxx
G

]
− (1− γ)θ

2(ψ − 1)2

∣∣∣∣GxG
∣∣∣∣2

+
1− γ

2(ψ − 1)2(γ + θ)

∣∣∣∣(ψ − 1)λ̄(x)− (γ + θ − 1)
Gx
G

∣∣∣∣2}
=
1− γ

ψ − 1
J

{
1

2
tr

[
2− γ − ψ

ψ − 1

Gx
G

G′
x

G
+
Gxx
G

]
− θ

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2

+
1

2(ψ − 1)(γ + θ)

∣∣∣∣(ψ − 1)λ̄(x)− (γ + θ − 1)
Gx
G

∣∣∣∣2}
(D.7)

=
1− γ

ψ − 1
J

{
1

2
tr

[
Gxx
G

]
+

ψ − 1

2(γ + θ)
|λ̄(x)|2 −

(
1− (γ + θ)−1

)
λ̄(x)′

Gx
G

− 1

2(ψ − 1)

(
γ + ψ − 2 + θ −

(
1− (γ + θ)−1

)
(γ + θ − 1)

) ∣∣∣∣GxG
∣∣∣∣2}

=
1− γ

ψ − 1
J

{
1

2
tr

[
Gxx
G

]
+
ψ − 1

2
(γ + θ)−1|λ̄(x)|2 −

(
1− (γ + θ)−1

)
λ̄(x)′

Gx
G

− 1

2(ψ − 1)

(
ψ − (γ + θ)−1

) ∣∣∣∣GxG
∣∣∣∣2}.
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The fourth and fifth terms in the PDE (4.25) are computed as follows:

r̄(x)wJw − (Kx)′Jx =
1− γ

ψ − 1
J

(
−Gτ
G

+ (ψ − 1)r̄(x)− (Kw)′Gx
G

)
. (D.8)

The sixth and seventh terms in the PDE (4.25) are calculated from Eq. (4.36)
as follows:

1

ψ − 1
ĉ∗Jw−

β(1− γ)

1− ψ−1
J =

1

ψ − 1

(
βψ

w

G

(1− γ)J

w
+β(γ−1)ψJ

)
=

1− γ

ψ − 1
J

(
βψ

G
− βψ

)
.

(D.9)

Substituting Eqs. (D.7)–(D.9) into the PDE (4.25) and dividing by
1− γ

ψ − 1
J

yields the PDE (4.39).

E Proof of Propositions 2 and 3

E.1 Proof of Proposition 2

Eq. (5.5) immediately follows from Eq. (4.37). From Lemma 1, we obtain

dSMt +DM
t dt = SMt

(
rt + (σMt )′λt

)
dt+ SMt (σMt )′ dBt, (E.1)

where σMt = σM+ΣMXt, and ΣM is a solution to Eq. (E.2) and σM is given
by Eq. (E.3).

0 = Σ2
M − (K + Λ)′ΣM − ΣM (K + Λ) +∆M −R, (E.2)

σM = (K + Λ− ΣM )′−1(δM − ρ− ΣMλ). (E.3)

The representative agent’s nominal budget constraint is

dW ∗
t =W ∗

t

(
rt +

(
ς̂t + σpt

)′
λt −

ptĉ
∗(X∗

t )

W ∗
t

)
dt+W ∗

t

(
ς̂t + σpt

)′
dBt. (E.4)

Given that W ∗
t = SMt and ptĉ

∗(X∗
t ) = DM

t , from Eq. (E.1), the representa-
tive agent’s nominal budget constraint is also expressed as

dW ∗
t = dSMt +

(
DM
t − ptc

∗
t

)
dt

=W ∗
t

(
rt +

(
σ̄Mt + σpt

)′
λt

)
dt+W ∗

t

(
σ̄Mt + σpt

)′
dBt.

(E.5)

Eqs. (E.4) and (E.5) show that ς̂∗(Xt) = σ̄Mt . Thus, σ̄Wt = σ̄Mt . Inserting
σ̄Wt = σ̄Mt into Eq. (5.3) yields

Gx
G

= σ̄M − σ̄c. (E.6)

35



Substituting Eq. (E.6) into Eq. (5.5), we obtain Eq. (5.7). Inserting Eq. (5.5)
into Eq. (4.33) yields Eq. (5.10). Substituting Eq. (E.6) and σ̄Wt = σ̄Mt into
Eq. (5.10) yields Eq (5.11). Applying Ito’s lemma to W̄ ∗ = β−ψc∗G yields

dW̄ ∗

W̄ ∗ =
dc∗

c∗
+

(
Gx
G

)′
(−KXtdt+dBt)+

1

2
tr

[
Gxx
G

]
dt+

(
dc∗

c∗

)′ dG

G
. (E.7)

Thus, from the real budget constraint equation (4.11) and Eq. (E.6), we
obtain

r̄t + λ̄′tσ̄
M
t − βψ

G
= µ̄ct +

1

2
tr

[
Gxx
G

]
−
(
Gx
G

)′
Kx+ (σ̄cr)

′(σ̄Mt − σ̄ct ). (E.8)

Using the PDE (4.39), we obtain

r̄t = µ̄ct + (σ̄ct )
′(σ̄Mt − σ̄ct )− λ̄′tσ̄

M
t +

1

2
tr

[
Gxx
G

]
−
(
Gx
G

)′
Kx+

βψ

G

= µ̄ct + (σ̄ct )
′(σ̄Mt − σ̄ct )− λ̄′tσ̄

M
t +

ψ − (γ + θ)−1

2(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2

+
(
1− (γ + θ)−1

)
λ̄′t
Gx
G

− ψ − 1

2(γ + θ)
|λ̄t|2 − (ψ − 1)r̄t + βψ.

(E.9)

The above equation is rewitten as

ψr̄t = βψ + µ̄ct + (σ̄ct )
′(σ̄Mt − σ̄ct )− λ̄′tσ̄

M
t +

(γ + θ)ψ − 1

2(γ + θ)(ψ − 1)

∣∣∣∣GxG
∣∣∣∣2

+
γ + θ − 1

γ + θ
λ̄′t
Gx
G

− ψ − 1

2(γ + θ)
|λ̄t|2 (E.10)

Substituting Eqs. (E.6) and (5.7) into the above equation yields

r̄t = β + ψ−1µ̄ct +
ψ−1

2(γ + θ)(ψ − 1)
h̄(σ̄ct , σ̄

M
t ), (E.11)

where

h̄(σ̄ct , σ̄
M
t ) = 2(γ+θ)

{
(ψ−1)(σ̄ct )

′(σ̄Mt −σ̄ct )−
((

(γ+θ)ψ−1
)
σ̄Mt −(γ+θ−1)σ̄ct

)′
σ̄Mt

}
+
(
(γ+θ)ψ−1

)
|σ̄Mt −σ̄ct |2+2(γ+θ−1)

((
(γ+θ)ψ−1

)
σ̄Mt −(γ+θ−1)σ̄ct

)′
(σ̄Mt −σ̄ct )

−
∣∣((γ + θ)ψ − 1

)
σ̄Mt − (γ + θ − 1)σ̄ct

∣∣2. (E.12)

Then, h̄(σ̄ct , σ̄
M
t ) is calculated as

h̄(σ̄ct , σ̄
M
t ) = (γ + θ)

{
(γ + θ − ψ)|σ̄ct |2 −

(
(γ + θ)ψ − 1

)
|σ̄Mt |2

}
. (E.13)

Substituting the above equation into Eq. (E.11), we obtain Eq. (5.8).
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E.2 Proof of Proposition 3

Substituting Eq. (5.5) and σ̄W = σW −σp into λ = λ̄+σp yields Eq. (5.20).
From Eq. (E.6), the following equation holds.

Gx
G

= σM − σc. (E.14)

Inserting Eq. (E.14) and σW = σM yields Eqs. (5.22). In the same way, we
obtain Eqs. (5.25) and (5.26). For the equilibrium nominal risk-free rate,
substituting Eqs. (5.18), σ̄c = σc − σp, and σ̄M = σM − σp into Eq. (4.5)
yields

rt = β + ψ−1
(
µct − µpt − (σct )

′σpt + |σpt |2
)
+

1

2

(γ + θ)ψ−1 − 1

ψ − 1
|σct − σpt |2

− 1

2

γ + θ − ψ−1

1− ψ−1
|σMt − σpt |2 + µpt − λ′tσ

p
t . (E.15)

Subtituting Eq. (5.22) into the above equation, we obtain

rt = β + ψ−1µct + (1− ψ−1)µpt +
1

ψ − 1
h(σct , σ

M
t , σ

p
t ), (E.16)

where

h(σct , σ
M
t , σ

p
t ) = (ψ−1 − 1)

(
(σct )

′σpt − |σpt |2
)

+
1

2

(
(γ + θ)ψ−1 − 1

)
|σct − σpt |2 −

1

2

(
(γ + θ)ψ − 1

)
|σMt − σpt |2

+ (γ + θ − 1)(σct )
′σpt −

(
(γ + θ)ψ − 1

)
(σM )′σpt + (γ + θ − 1)(ψ − 1)|σpt |2.

(E.17)

Then, h(σct , σ
M
t , σ

p
t ) is calculated as

h(σct , σ
M
t , σ

p
t ) =

1

2

(
(γ + θ)ψ−1 − 1

)
|σct |2 −

1

2

(
(γ + θ)ψ − 1

)
|σMt |2

− (γ + θ − 1)ψ−1(ψ − 1)(σct )
′σpt +

1

2
(γ + θ − 2)(1− ψ−1)(ψ − 1)|σpt |2.

(E.18)

Substituting the above equation into Eq. (E.16), we obtain Eq. (5.23).

F Proof of Theorems

F.1 Proof of Theorem 1

Inserting Gx = (a+Ax)G into Eq. (4.34) yields

η∗(x) = − 1

ψ − 1
(a+Ax). (F.1)
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By substituting Eq. (F.1) into (4.37), we obtain the optimal investment
(6.3). Substituting Eqs. (4.4), (4.5), (6.1) and derivatives of G into the
PDE (4.38) and noting A′ = A and x′

(
K+

(
1− (γ+ θ)−1

)
Λ̄
)′
Ax = x′A

(
K+(

1− (γ + θ)−1
)
Λ̄
)
x, we obtain

1

2
tr[A] +

1

2

(
1 +

θ

(γ − 1)(γ + θ)

)(
|a|2 + 2a′Ax+ x′A2x

)
−
{
γ + θ − 1

γ + θ
λ̄+

(
K +

γ + θ − 1

γ + θ
Λ̄

)
x

}′
a− γ + θ − 1

γ + θ
λ̄′Ax

− 1

2
x′
(
K +

γ + θ − 1

γ + θ
Λ̄

)′
Ax− 1

2
x′A

(
K +

γ + θ − 1

γ + θ
Λ̄

)
x

− β

(
a0 + a′x+

1

2
x′Ax

)
− γ − 1

2(γ + θ)

(
|λ̄|2 + 2λ̄′Λ̄x+ x′Λ̄′Λ̄x

)
− (γ − 1)

(
ρ̄0 + ρ̄′x+

1

2
x′R̄x

)
− β(log β − 1)(γ − 1) = 0. (F.2)

As Eq. (F.2) is identical on x, we obtain Eqs. (6.4)–(6.6).

F.2 Proof of Theorem 2

An analytical solution of the PDE (6.10) is expressed as Eq. (6.1). Substi-
tuting Eq. (6.1) into Eq. (4.36) yields the optimal consumption (6.11). By
substituting Eq. (F.1) into (4.37), we obtain the optimal investment (6.12).
Substituting Eq. (6.1) into Eq. (6.9) yields

g1 = exp

([
−a0 − a′E[ lim

t→∞
Xt]−

1

2
E[ lim
t→∞

X ′
tAXt]

])
. (F.3)

As Eq. (2.1) is transformed into d
(
etKXt

)
= etK dBt, Xt is solved as Xt =

e−tKX0 +

∫ t

0
e(s−t)K dBs. Hence, the stationary distribution of the state

vector is N(0, (K+K′)−1). Thus, g1 is calculated as Eq. (6.16). Substituting
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G and its derivatives into the PDE (6.10) yields

1

2
tr
[
aa′ +A+ ax′A+Axa′ +Axx′A

]
−ψ − (γ + θ)−1

2(ψ − 1)

(
a′ + x′A

)
(a+Ax)

−
{(

1− (γ + θ)−1
)
λ̄+

(
K +

(
1− (γ + θ)−1

)
Λ̄
)
x
}′
a−

(
1− (γ + θ)−1

)
λ̄′Ax

− 1

2
x′
(
K +

(
1− (γ + θ)−1

)
Λ̄
)′
Ax− 1

2
x′A

(
K +

(
1− (γ + θ)−1

)
Λ̄
)
Xt

− βψg1

(
log g1 − 1 + a0 + a′x+

1

2
x′Ax

)
+

(ψ − 1)(γ + θ)−1

2

(
|λ̄|2 + 2λ̄′Λ̄x+ x′Λ̄′Λ̄x

)
+ (ψ − 1)

(
ρ̄0 + ρ̄′x+

1

2
x′R̄x

)
− βψ = 0. (F.4)

Therefore, we obtain Eqs. (6.13)–(6.15).
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