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ON THE ITERATIVE SCHEME GENERATING METHODS
USING MEAN-VALUED SEQUENCES

ATSUMASA KONDO

Abstract. Using the Mann method and the shrinking projection method, we
present generalized forms of iterative scheme generating methods and com-
pared them with prior frameworks. To this end, the properties of mean-valued
sequences are leveraged. Subsequently, we establish a convergence theorem
similar to that developed by Martinez-Yanes and Xu. This approach highlights
the di¤erence between the conventional shrinking projection method and the
Martinez-Yanes and Xu variant. The proposed frameworks yield various types
of iterative schemes for �nding common �xed points, including a three-step
iterative scheme. The class of mappings considered incorporate general types,
including nonexpansive mappings.

1. Introduction

Let C be a nonempty subset of a real Hilbert space H and let S be a mapping
from C into H. In H, an inner product h�; �i and the induced norm k�k are de�ned.
The notation F (S) = fx 2 C : Sx = xg is used to represent a set of all �xed points
of S. A mapping S : C ! H is called nonexpansive if kSx� Syk � kx� yk
for all x; y 2 C. Due to its broad applicability, the construction of a sequence
that converges to a �xed point of a nonexpansive mapping has been a topic of
signi�cant research interest. For an overview of �xed point theory and surrounding
topics, readers may refer to the monographs by Goebel and Kirk [9], Takahashi
[35], and Goebel [8].
Following Baillon [3] and Shimizu and Takahashi [33], Atsushiba and Takahashi

[2] introduced the following iterative scheme using a mean-valued sequence:

(1.1) xn+1 = anxn + (1� an)
1

n2

n�1X
k=0

n�1X
l=0

SkT lxn

for all n 2 N. In (1.1), an initial point x1 2 C is arbitrarily given and S; T : C ! C
are commutative nonexpansive mappings. The sequence fang (� [0; 1]) is required
to satisfy certain conditions. Atsushiba and Takahashi proved a convergence the-
orem that weakly approximates a common �xed point of S and T in a framework
of a Banach space. Using mean-valued sequences, Kondo [20] proved the following
theorem:

Theorem 1.1 ([20]). Let C be a nonempty, closed, and convex subset of H. Let
S; T : C ! C be quasi-nonexpansive and mean-demiclosed mappings such that
F (S) \ F (T ) 6= ;. Let PF (S)\F (T ) be the metric projection from H onto F (S) \
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2 ATSUMASA KONDO

F (T ). Let fang, fbng, and fcng be sequences of real numbers in the interval [0; 1]
such that an + bn + cn = 1 for all n 2 N, limn!1anbn > 0, and limn!1ancn > 0.
De�ne a sequence fxng in C as follows:

x1 2 C : given,(1.2)

xn+1 = anxn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn

for all n 2 N = f1; 2; � � � g, where fzng and fwng are sequences in C that satisfy

(1.3) kzn � qk � kxn � qk and kwn � qk � kxn � qk

for all q 2 F (S) \ F (T ) and n 2 N. Then, fxng converges weakly to an element bx
in F (S) \ F (T ), where bx � limn!1 PF (S)\F (T )xn.

In Theorem 1.1, a �mean-demiclosed mapping�is de�ned as one where any weak
cluster point of a mean-valued sequence (as de�ned in (1.2)) is a �xed point. This
class of mappings includes nonexpansive mappings as special cases, as described in
Proposition 2.1. Furthermore, more general types of mappings than nonexpansive
mappings also fall within the scope of this theorem, as discussed in the Appendix
in the work of Kondo [22].
The required conditions for the sequences fzng and fwng in Theorem 1.1 are

only the ones speci�ed in (1.3). For example, by setting zn = �nxn + (1� �n)Txn
and wn = �nxn + (1� �n)Sxn, we obtain the following iterative scheme:

zn = �nxn + (1� �n)Txn;(1.4)

wn = �nxn + (1� �n)Sxn;

xn+1 = anxn + bn
1

n

n�1X
k=0

Skzn + cn
1

n

n�1X
l=0

T lwn;

where an initial point x1 2 C is given. The coe¢ cients of convex combinations �n
and �n are not subject to any restrictive conditions, except for �n; �n 2 [0; 1]. It
can be veri�ed that zn and wn in (1.4) satisfy the conditions in (1.3). Note that
zn (resp. wn) in (1.4) depends only on the mapping T (resp. S) at least directly.
The iterative scheme in (1.4) is a two-step scheme, similar to those presented by
Ishikawa [13], Xu [41], Tan and Xu [40], Berinde [4], and Martinez-Yanes and Xu
[28]. Furthermore, three-step iterative schemes can be generated from Theorem
1.1. For instance, consider the following formulation:

wn = �nxn + (1� �n)Txn;(1.5)

zn = �nxn + (1� �n)Swn;

xn+1 = anxn + bn
1

n

n�1X
k=0

Skzn + cn
1

n

n�1X
l=0

T lzn:

The sequence fzng in (1.5) ful�lls the condition kzn � qk � kxn � qk in (1.3). For
three-step iterative methods, see the work of Noor [31], Dashputre and Diwan [7],
Phuengrattana and Suantai [32], and Chugh et al. [6]. Four-step and more general
types of iterative schemes can also be generated from Theorem 1.1. Thus, this
approach can be called an iterative scheme generating method using mean-valued
sequences.
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In 2006, Martinez-Yanes and Xu [28] extended the CQ method by Nakajo and
Takahashi [30] and proved strong convergence theorems for �nding a �xed point of
a nonexpansive mapping. Although Kondo [19, 21] applied the Martinez-Yanes and
Xu method with mean-valued sequences, iterative scheme generating methods have
not yet been applied to Martinez-Yanes and Xu type iterative schemes. In 2008,
Takahashi et al. [36] proved a strong convergence theorem using metric projections
on shrinking sets. Their method is known as the shrinking projection method. In
2023, Kondo [22] applied iterative scheme generating methods with mean-valued
sequences to the CQ method and shrinking projection method and obtained various
strong convergence theorems.
In this study, we generalize iterative scheme generating methods using mean-

valued sequences. Theorem 1.1 is obtained as a corollary from our result (Theorem
3.1). An iterative scheme generating method with the shrinking projection method
addressed in Kondo [22] is also extended (Theorem 4.1). Subsequently, we apply
this method to the Martinez-Yanes and Xu iterative scheme with the shrinking
projection method (Theorem 5.1). This approach clari�es the di¤erence between
the conventional shrinking projection method and that incorporating the Martinez-
Yanes and Xu method. By assuming several additional conditions, the proposed
iterative scheme generating method can be applied to the Martinez-Yanes and Xu
method. Our results yield various types of iterative schemes for �nding common
�xed points, including two- and three-step iterative schemes. The target mappings
are of the general type, which are required to be quasi-nonexpansive with a con-
dition regarding mean-demiclosedness. This class includes nonexpansive mappings
and numerous other more general types of mappings.
The remaining article is organized as follows: Section 2 summarizes background

information. Section 3 proves a Mann type [27] theorem that generalizes Theo-
rem 1.1. Section 4 provides a generalized version of the iterative scheme gener-
ating method with the shrinking projection method. Section 5 elaborates upon
the Martinez-Yanes and Xu iterative scheme with the shrinking projection method.
Section 6 presents two iterative schemes derived from the result in Section 5 to
demonstrate the applicability of the proposed approach. Section 7 concisely con-
cludes this article.

2. Preliminaries

This section provides basic information and results. Let fxng be a sequence
in a real Hilbert space H and let x be an element in H. We use the notation
xn ! x for strong convergence and xn * x for weak convergence. A sequence
fxng converges weakly to x if and only if for every subsequence fxnig of fxng,
there exists a subsequence

�
xnj
	
of fxnig such that xnj * x. A closed and convex

subset of H is weakly closed.
Let x; y; z 2 H and let a; b; c 2 R such that a+b+c = 1. According to Maruyama

et al. [29] and Zegeye and Shahzad [42], the following relation holds:

kax+ by + czk2(2.1)

= a kxk2 + b kyk2 + c kzk2 � ab kx� yk2 � bc ky � zk2 � ca kz � xk2 :
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For (2.1), assumptions a; b; c 2 [0; 1] are not necessary. If a; b; c 2 [0; 1], then the
following expression holds:

(2.2) kax+ by + czk2 � a kxk2 + b kyk2 + c kzk2 :
Let F be a nonempty, closed, and convex subset of H. A metric projection from H
onto F is denoted by PF , that is, kx� PFxk � kx� hk for all x 2 H and h 2 F .
The metric projection PF is nonexpansive and satis�es

hx� PFx; PFx� hi � 0 and(2.3)

kx� PFxk2 + kPFx� hk2 � kx� hk2(2.4)

for all x 2 H and h 2 F . Let C be a nonempty, closed, and convex subset of H.
Then, a set D de�ned by

(2.5) D = fh 2 C : 0 � hx; hi+ dg
is closed and convex, where x 2 H and d 2 R, as indicated in Lemma 1.3 in the
work of Martinez-Yanes and Xu [28].
A mapping S : C ! H with F (S) 6= ; is termed quasi-nonexpansive if kSx� qk �

kx� qk for all x 2 C and q 2 F (S). The set of �xed points of a quasi-nonexpansive
mapping is closed and convex, as indicated by Itoh and Takahashi [14]. A nonex-
pansive mapping with a �xed point is quasi-nonexpansive. Although the following
proposition has already been proved in previous studies in more general forms
(Lemma 3.1 in Kondo and Takahashi [25] or Lemma 2.3 in Kondo [20]), we present
a proof here because the property of a mapping shown in the following proposition
is important for this study.

Proposition 2.1 ([25]; see also [20]). Let S : C ! C be a nonexpansive mapping,
where C is a nonempty, closed, and convex subset of H. For a bounded sequence
fzng in C, de�ne Zn � 1

n

Pn�1
l=0 S

lzn (2 C) for all n 2 N. Let Zni * p, where
fZnig is a subsequence of fZng. Then, p 2 F (S) holds.

Proof. As C is closed and convex, it is weakly closed. As fZnig is a sequence in C
and Zni * p, we have that p 2 C. Hence, Sp (2 C) exists. Our aim is to show that
Sp = p. As S is nonexpansive, it follows that

Sl+1zn � Sp

2 � 

Slzn � p

2
for all n 2 N and l 2 N[f0g. From this, we have

Sl+1zn � Sp

2 � 

Slzn � Sp

2 + 2 
Slzn � Sp; Sp� p�+ kSp� pk2 :
Summing these inequalities with respect to l from 0 to n � 1 and dividing by n
yields

1

n
kSnzn � Spk2 �

1

n
kzn � Spk2 + 2 hZn � Sp; Sp� pi+ kSp� pk2 :

As 1
n kS

nzn � Spk2 � 0, we have

0 � 1

n
kzn � Spk2 + 2 hZn � Sp; Sp� pi+ kSp� pk2

for all n 2 N. Recall that fzng is bounded and Zni * p is assumed. Replacing n
by ni, we obtain

0 � 2 hp� Sp; Sp� pi+ kSp� pk2
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by taking the limit as i ! 1. This implies that 0 � �kSp� pk2. Thus, Sp = p.
This completes the proof. �

Following the work of Kondo [17], we term a mapping S : C ! C mean-
demiclosed if

(2.6) Znj * p (weak convergence) =) p 2 F (S)

under the setting of Proposition 2.1. According to Proposition 2.1, a nonexpansive
mapping is mean-demiclosed.
In the next section, we focus on mappings that are quasi-nonexpansive and

mean-demiclosed. Although this class of mappings contains nonexpansive mappings
as special cases, it also includes more broad classes of mappings. For example,
generalized hybrid mappings [16], normally generalized hybrid mappings [39], 2-
generalized hybrid mappings [29], and normally 2-generalized hybrid mappings [24]
are quasi-nonexpansive and mean-demiclosed if they have �xed points. Information
regarding these types of mappings can be found in the Appendix in the work of
Kondo [22].
The following lemma is used in the proof of Theorem 3.1:

Lemma 2.1 ([37]). Let PF be the metric projection from H onto F , where F is a
nonempty, closed, and convex subset of H. Let fxng be a sequence in H such that

(2.7) kxn+1 � qk � kxn � qk

for all q 2 F and n 2 N. Then, fPFxng is convergent in F . In other words, there
exists bx 2 F such that PFxn ! bx.
For the remaining analysis, we assume that there exists a common �xed point

of nonlinear mappings. The following is a simpli�ed version of classical results
demonstrated in 1965 by Browder [5], Göhde [10], and Kirk [15] in frameworks of
Banach spaces:

Theorem 2.1 ([5, 10, 15]). Let C be a nonempty, closed, convex, and bounded
subset of H. Let S; T : C ! C be nonexpansive mappings such that ST = TS.
Then, S and T have a common �xed point.

For common �xed point theorems for more general types of mappings, see the
works of Hojo [11], Kondo [18], and articles cited therein.

3. Mann Method

This section presents one of the main theorems of this article, which shows
how to approximates common �xed points of two quasi-nonexpansive and mean-
demiclosed mappings. Recall that nonexpansive mappings with �xed points are
quasi-nonexpansive. Furthermore, from Proposition 2.1, nonexpansive mappings
are mean-demiclosed. Hence, the theorem can be applied to nonexpansive mappings
under the assumption that the mappings have a common �xed point. The basic
elements of the proof draw upon various previous studies, e.g., [16, 23, 26, 29, 39].

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S; T : C ! C be quasi-nonexpansive and mean-demiclosed mappings
such that F (S)\F (T ) 6= ;. Let fang, fbng ; and fcng be sequences of real numbers
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in the interval [0; 1] such that an + bn + cn = 1 for all n 2 N; limn!1anbn > 0;
and limn!1ancn > 0. De�ne a sequence fxng in C as follows:

x1 2 C : given,

xn+1 = anyn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn(3.1)

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy

(3.2) kyn � qk � kxn � qk ; kzn � qk � kxn � qk ; kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N and
(3.3) xn � yn ! 0

as n!1. Then, fxng converges weakly to an element bx in F (S) \ F (T ), wherebx � limn!1 PF (S)\F (T )xn.

Proof. De�ne

Zn =
1

n

n�1X
l=0

Slzn and Wn =
1

n

n�1X
l=0

T lwn

for all n 2 N. As C is convex, Zn and Wn are elements in C. Now, we can simply
state that xn+1 = anyn + bnZn + cnWn (2 C).
Observe that

(3.4) kZn � qk � kzn � qk and kWn � qk � kwn � qk
for all q 2 F (S) \ F (T ) and n 2 N. Indeed, as S is quasi-nonexpansive and
q 2 F (S) \ F (T ) � F (S), it follows that

kZn � qk =





 1n

n�1X
l=0

Slzn � q





 = 1

n







n�1X
l=0

Slzn � nq





(3.5)

=
1

n







n�1X
l=0

�
Slzn � q

�




 � 1

n

n�1X
l=0



Slzn � q


� 1

n

n�1X
l=0

kzn � qk = kzn � qk :

Similarly, the second part of (3.4) also holds true as T is quasi-nonexpansive and
q 2 F (S) \ F (T ) � F (T ).
We verify that

(3.6) kxn+1 � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N. Indeed, from (3.4) and (3.2), it follows that

kxn+1 � qk = kanyn + bnZn + cnWn � qk
= kan (yn � q) + bn (Zn � q) + cn (Wn � q)k
� an kyn � qk+ bn kZn � qk+ cn kWn � qk
� an kyn � qk+ bn kzn � qk+ cn kwn � qk
� an kxn � qk+ bn kxn � qk+ cn kxn � qk
= kxn � qk :
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Thus, (3.6) holds as claimed. According to (3.6), the sequence fkxn � qkg is
convergent for all q 2 F (S) \ F (T ), and fxng is bounded. Furthermore, from
Lemma 2.1, we have that

�
PF (S)\F (T )xn

	
is convergent in F (S) \ F (T ). Thus,bx = limn!1 PF (S)\F (T )xn exists in F (S) \ F (T ).

Next, we aim to demonstrate that

(3.7) yn � Zn ! 0 and yn �Wn ! 0

as n ! 1. Here, q 2 F (S) \ F (T ) is arbitrarily selected. Using (2.1), (3.4), and
(3.2), we obtain the following expressions:

kxn+1 � qk2

= kan (yn � q) + bn (Zn � q) + cn (Wn � q)k2

= an kyn � qk2 + bn kZn � qk2 + cn kWn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

� an kyn � qk2 + bn kzn � qk2 + cn kwn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

� an kxn � qk2 + bn kxn � qk2 + cn kxn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

= kxn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2 :

As bncn kZn �Wnk2 � 0, we obtain

anbn kyn � Znk2 + ancn kyn �Wnk2 � kxn � qk2 � kxn+1 � qk2 :

As fkxn � qkg is convergent, we have from the assumptions limn!1anbn > 0 and
limn!1ancn > 0 that (3.7) holds true as claimed.
Observe that

(3.8) xn � Zn ! 0 and xn �Wn ! 0

as n!1. Indeed, from (3.3) and (3.7), it follows that

kxn � Znk � kxn � ynk+ kyn � Znk ! 0

as n!1. Similarly, we can show that xn �Wn ! 0.
Our goal is to prove that xn * bx �� limk!1 PF (S)\F (T )xk

�
. To this end, it is

su¢ cient to show that for any subsequence fxnig of fxng, there exists a subsequence�
xnj
	
of fxnig such that xnj * bx. Let fxnig be a subsequence of fxng. As fxnig

is bounded, there exists a subsequence
�
xnj
	
of fxnig such that xnj * p for some

p 2 H. From (3.8), we have that Znj * p and Wnj * p. As S and T are mean-
demiclosed (2.6), we obtain p 2 F (S) \ F (T ). From (2.3), it follows that


xnj � PF (S)\F (T )xnj ; PF (S)\F (T )xnj � p
�
� 0

for all j 2 N. As xnj * p and PF (S)\F (T )xn ! bx, it holds in the limit as j ! 1
that hp� bx; bx� pi � 0. Thus, p = bx. This indicates that xn * bx. The proof is
thus complete. �
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Setting yn = xn for all n 2 N in Theorem 3.1, we obtain Theorem 1.1 as a corol-
lary. Therefore, the iterative schemes (1.4) and (1.5) presented in the Introduction
are generated from Theorem 3.1. In (3.1), the idea using a sequence fyng that
satis�es kyn � qk � kxn � qk and xn � yn ! 0 instead of fxng is derived from the
recent work of Kondo [23].

4. Takahashi�Takeuchi�Kubota Method

This section presents a strong convergence theorem for �nding a common �xed
point of two nonlinear mappings. We use the shrinking projection method proposed
by Takahashi et al. [36] together with mean-valued sequences. The basic element
of the proof has been developed in many prior studies, for instance, [12, 17, 22, 38].
For proving theorems in the following sections, we relax a condition pertaining to

mappings, compared with that in Theorem 3.1. Consider the following setting: Let
C be a nonempty, closed, and convex subset of a real Hilbert space H. Moreover,
let S : C ! C with F (S) 6= ; and let fzng be a bounded sequence in C. De�ne
Zn =

1
n

Pn�1
l=0 S

lzn (2 C). Following Kondo [17], consider the following condition:
(4.1) Znj ! p (strong convergence) =) p 2 F (S) ;
where

�
Znj

	
is a subsequence of fZng. A mean-demiclosed mapping (2.6) satis�es

the condition (4.1), and thus, broad classes of mappings, including nonexpansive
mappings, satisfy this condition (4.1). In the following analysis, quasi-nonexpansive
mappings with the condition (4.1) are considered.

Theorem 4.1. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S; T : C ! C be quasi-nonexpansive mappings that satisfy the condi-
tion (4:1). Suppose that F (S) \ F (T ) 6= ;. Let fang, fbng, and fcng be sequences
of real numbers in the interval [0; 1] such that an + bn + cn = 1 for all n 2 N,
limn!1 anbn > 0, and limn!1ancn > 0. Let fung be a sequence in H such that
un ! u (2 H). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,
C1 = C;

Xn = anyn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn;

Cn+1 = fh 2 Cn : kXn � hk � kxn � hkg ;
xn+1 = PCn+1un+1

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy

(4.2) kyn � qk � kxn � qk ; kzn � qk � kxn � qk ; kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N and
(4.3) xn � yn ! 0

as n!1. Then, fxng converges strongly to an element bu in F (S)\F (T ), wherebu = PF (S)\F (T )u.
Proof. In this proof, we use again the notation

Zn =
1

n

n�1X
l=0

Slzn and Wn =
1

n

n�1X
l=0

T lwn
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for simplicity, where fzng and fwng are given. As C is convex, fZng and fWng are
sequences in C. In this case, Xn = anyn + bnZn + cnWn (2 C).
We show that (a) Cn is closed and convex, (b) F (S)\F (T ) � Cn for all n 2 N,

and (c) the sequences fxng ; fyng ; fzng ; fwng ; fXng in C and fCng are properly
de�ned. First, we consider the case in which n = 1.
(i) Given x1 2 C1 (= C), we can choose y1, z1, and w1 2 C such that (4.2) and

(4.3) are satis�ed for n = 1. For instance, if we set y1 = z1 = w1 = x1, then the
condition (4.2) is ful�lled. With similar settings for all n 2 N, the condition (4.3)
will be satis�ed. With x1; y1; z1; w1 2 C, X1 and C2 are de�ned as follows:

X1 = a1y1 + b1Z1 + c1W1 2 C and

C2 = fh 2 C1 : kX1 � hk � kx1 � hkg :

As C1 is closed and convex, C2 is also closed and convex. We verify that F (S) \
F (T ) � C2. Let q 2 F (S) \ F (T ) (� C1). It follows from (4.2) that

kX1 � qk = ka1y1 + b1Z1 + c1W1 � qk
= ka1y1 + b1z1 + c1w1 � qk
� a1 ky1 � qk+ b1 kz1 � qk+ c1 kw1 � qk
� a1 kx1 � qk+ b1 kx1 � qk+ c1 kx1 � qk = kx1 � qk ;

which means that q 2 C2. Therefore, F (S) \ F (T ) � C2 as claimed. As F (S) \
F (T ) 6= ; is assumed, we have C2 6= ;. Consequently, the metric projection PC2
exists and x2 = PC2u2 is de�ned.
(ii) Given x2 2 C2 (� C1 = C), we can choose y2, z2, and w2 2 C such that (4.2)

and (4.3) are satis�ed for n = 2. Furthermore, X2 and C3 are de�ned as follows:

X2 = a2y2 + b2Z2 + c2W2 2 C and

C3 = fh 2 C2 : kX2 � hk � kx2 � hkg :

Using the same reasoning as that in the case of (i), we can verify that C3 is closed
and convex and F (S)\F (T ) � C3. As F (S)\F (T ) 6= ; is assumed, it holds that
C3 6= ;. Thus, the metric projection PC3 exists and x3 = PC3u3 is de�ned.
Repeating the same analysis, we can prove (a), (b), and (c) as claimed.

De�ne un = PCnu (2 Cn). As Cn � Cn�1 � � � � � C1 = C, fung is a sequence in
C. As un = PCnu and F (S) \ F (T ) � Cn, it follows that

(4.4) ku� unk � ku� qk

for all q 2 F (S) \ F (T ) and n 2 N. This outcome shows that fung is bounded.
Furthermore, as un = PCnu and un+1 = PCn+1u 2 Cn+1 � Cn, we obtain that

ku� unk � ku� un+1k

for all n 2 N. This shows that the sequence fku� unkg of real numbers is monotone
increasing. As fung is bounded, fku� unkg is also bounded. Thus, fku� unkg is
convergent.
Subsequently, we demonstrate that fung is convergent in C. In other words,

there exists u 2 C such that

(4.5) un ! u:
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Let m;n 2 N such that m � n. As un = PCnu and um = PCmu 2 Cm � Cn, we
have from (2.4) that

ku� unk2 + kun � umk2 � ku� umk2 :
As fku� unkg is convergent, it can be stated that un�um ! 0 as m;n!1. This
indicates that fung is a Cauchy sequence in C. As C is closed in a real Hilbert
space H, it is complete. Hence, there exists u 2 C such that un ! u as claimed.
Next, observe that fxng has the same limit point, that is,

(4.6) xn ! u:

Indeed, as the metric projection PCn is nonexpansive and un ! u is assumed, it
follows from (4.5) that

kxn � uk � kxn � unk+ kun � uk
= kPCnun � PCnuk+ kun � uk
� kun � uk+ kun � uk ! 0

as claimed. As fxng is convergent, it is bounded.
We prove that

(4.7) xn �Xn ! 0:

Indeed, as fxng is convergent, it holds that xn � xn+1 ! 0. From xn+1 =
PCn+1un+1 2 Cn+1, it follows that kXn � xn+1k � kxn � xn+1k ! 0. Therefore,
we have

kxn �Xnk � kxn � xn+1k+ kxn+1 �Xnk ! 0

as claimed. As fxng is bounded, fXng is also bounded according to (4.7).
Now, note that

(4.8) kZn � qk � kzn � qk and kWn � qk � kwn � qk
for all q 2 F (S) \ F (T ) and n 2 N. These inequalities in (4.8) can be proved in
the same manner as (3.5), given that S and T are quasi-nonexpansive. Using (4.8),

we demonstrate that

(4.9) yn � Zn ! 0 and yn �Wn ! 0:

Here, we arbitrarily select q 2 F (S)\F (T ). From (2.1), (4.8), and (4.2), it follows
that

kXn � qk2

= kan (yn � q) + bn (Zn � q) + cn (Wn � q)k2

= an kyn � qk2 + bn kZn � qk2 + cn kWn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

� an kyn � qk2 + bn kzn � qk2 + cn kwn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

� an kxn � qk2 + bn kxn � qk2 + cn kxn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

= kxn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2 :
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As bncn kZn �Wnk2 � 0, it follows that
anbn kyn � Znk2 + ancn kyn �Wnk2

� kxn � qk2 � kXn � qk2

� (kxn � qk+ kXn � qk) jkxn � qk � kXn � qkj
� (kxn � qk+ kXn � qk) kxn �Xnk :

As fxng and fXng are bounded, we obtain (4.9) from (4.7) and the assumptions
limn!1 anbn > 0 and limn!1ancn > 0.
Next, we show that

(4.10) xn � Zn ! 0 and xn �Wn ! 0:

Indeed, from (4.3) and (4.9), it holds that

kxn � Znk � kxn � ynk+ kyn � Znk ! 0:

The second part in (4.10) can be similarly veri�ed.
From (4.6) and (4.10), we have Zn ! u and Wn ! u. Therefore, from (4.1), we

obtain u 2 F (S) \ F (T ).
Finally, we demonstrate that

u
�
= lim

n!1
un = lim

n!1
xn

�
= bu �= PF (S)\F (T )u� :

As u 2 F (S) \ F (T ) and bu = PF (S)\F (T )u, it is su¢ cient to show that ku� uk �
ku� buk. As bu 2 F (S)\F (T ), from (4.4), it holds that ku� unk � ku� buk. From
(4.5), we obtain ku� uk � ku� buk. Thus, we have that u = bu. Given (4.6), it can
be stated that xn ! bu (= u). This completes the proof. �
Setting yn = xn in Theorem 4.1 yields the following corollary, corresponding to

Theorem 4 in the work of Kondo [22]:

Corollary 4.1 ([22]). Let C be a nonempty, closed, and convex subset of H. Let
S; T : C ! C be quasi-nonexpansive mappings that satisfy the condition (4:1).
Suppose that F (S) \ F (T ) 6= ;. Let fang, fbng, and fcng be sequences of real
numbers in [0; 1] such that an + bn + cn = 1 for all n 2 N, limn!1anbn > 0, and
limn!1ancn > 0. Let fung be a sequence in H such that un ! u (2 H). De�ne a
sequence fxng in C as follows:

x1 = x 2 C : given,
C1 = C;

Xn = anxn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn;

Cn+1 = fh 2 Cn : kXn � hk � kxn � hkg ;
xn+1 = PCn+1un+1

for all n 2 N, where fzng and fwng are sequences in C that satisfy

(4.11) kzn � qk � kxn � qk and kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N. Then, fxng converges strongly to an elementbu in F (S) \ F (T ), where bu = PF (S)\F (T )u.
From this corollary, various types of iterative schemes can be generated, as dis-

cussed in Section 5 in Kondo [22].
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5. Martinez-Yanes and Xu Method

This section presents a strong convergence theorem for �nding a common �xed
point of nonlinear mappings. We use the Martinez-Yanes and Xu iterative method
(see Theorem 2.1 in [28]) alongside the shrinking projection method [36] and mean-
valued sequences. To the authors�best knowledge, this is the �rst attempt to apply
the iterative scheme generating method to the Martinez-Yanes and Xu method.
The fundamentals of the following proof have been improved in many studies; see,
for instance, [1, 19, 21].

Theorem 5.1. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S; T : C ! C be quasi-nonexpansive mappings that satisfy the condi-
tion (4:1). Suppose that F (S) \ F (T ) 6= ;. Let fang, fbng, and fcng be sequences
of real numbers in the interval [0; 1] such that an + bn + cn = 1 for all n 2 N,
limn!1anbn > 0, and limn!1ancn > 0. Let fung be a sequence in H such that
un ! u (2 H). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,
C1 = C;

Xn = anyn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn;

Cn+1 =
n
h 2 Cn : kXn � hk2 � an kyn � hk2 + bn kzn � hk2 + cn kwn � hk2

o
;

xn+1 = PCn+1un+1

for all n 2 N, where fyng, fzng, and fwng are sequences in C that satisfy

(5.1) kyn � qk � kxn � qk ; kzn � qk � kxn � qk ; kwn � qk � kxn � qk
for all q 2 F (S) \ F (T ) and n 2 N and
(5.2) xn � yn ! 0; xn � zn ! 0; xn � wn ! 0

as n!1. Then, fxng converges strongly to an element bu in F (S)\F (T ), wherebu = PF (S)\F (T )u.
Remark 5.1. In the de�nition of Cn+1,

kXn � hk2 � an kyn � hk2 + bn kzn � hk2 + cn kwn � hk2

() 0 � an kynk2 + bn kznk2 + cn kwnk2 � kXnk2(5.3)

�2 hayn + bzn + cwn �Xn; hi

() kXn � hk2 � kyn � hk2 + bn
�
kznk2 � kynk2 + 2 hzn � yn; hi

�
(5.4)

+cn

�
kwnk2 � kynk2 + 2 hwn � yn; hi

�
:

From (5:4), we can see that Theorem 5:1 corresponds to the Martinez-Yanes and
Xu type. According to (2:5) and (5:3), the set Cn+1 is closed and convex if Cn is
closed and convex, given Xn; yn; zn; wn 2 C and an; bn; cn 2 R.

Proof. We again use the notation

Zn =
1

n

n�1X
l=0

Slzn and Wn =
1

n

n�1X
l=0

T lwn;
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where fzng and fwng are given. The mean-valued sequences fZng and fWng lie in
C as C is convex. Then, we have Xn = anyn + bnZn + cnWn (2 C).
We prove that (a) Cn is closed and convex, (b) F (S) \ F (T ) � Cn for all

n 2 N, and (c) the sequences fxng, fyng, fzng, fwng, and fXng in C and fCng
are properly de�ned. We start with the case of n = 1.
(i) Given x1 2 C1 (= C), we can choose y1, z1, and w1 2 C such that (5.1) and

(5.2) are satis�ed for n = 1. For example, setting y1 = z1 = w1 = x1, the condition
(5.1) is satis�ed. Furthermore, by choosing yn; zn; wn in a similar manner for all
n 2 N, the condition (5.2) will be satis�ed. With x1; y1; z1; w1 2 C, X1 and C2 are
de�ned as follows:

X1 = a1y1 + b1Z1 + c1W1

= a1y1 + b1z1 + c1w1 2 C and

C2 =
n
h 2 C1 : kX1 � hk2 � a1 ky1 � hk2 + b1 kz1 � hk2 + c1 kw1 � hk2

o
:

From (2.5) and (5.3), we see that C2 is closed and convex as C1 is closed and
convex. Observe that F (S) \ F (T ) � C2. Choose q 2 F (S) \ F (T ) (� C1)
arbitrarily. Using (2.2), we have

kX1 � qk2 = ka1y1 + b1z1 + c1w1 � qk2

= ka1 (y1 � q) + b1 (z1 � q) + c1 (w1 � q)k2

� a1 ky1 � qk2 + b1 kz1 � qk2 + c1 kw1 � qk2 :

This indicates that q 2 C2. Thus, F (S)\F (T ) � C2 as claimed. As F (S)\F (T ) 6=
; is assumed, C2 is also nonempty. Consequently, the metric projection PC2 exists
and x2 = PC2u2 is de�ned.
(ii) Given x2 2 C2 (� C1 = C), we can choose y2, z2, and w2 2 C such that (5.1)

and (5.2) are satis�ed for n = 2. With these elements, X2 and C3 are de�ned as
follows:

X2 = a2y2 + b2Z2 + c2W2

= a2y2 + b2
1

2
(z2 + Sz2) + c2

1

2
(w2 + Tw2) 2 C and

C3 =
n
h 2 C2 : kX2 � hk2 � a2 ky2 � hk2 + b2 kz2 � hk2 + c2 kw2 � hk2

o
:

Using the same reasoning as in case (i), we can verify that C3 is closed and convex
and F (S) \ F (T ) � C3. As F (S) \ F (T ) 6= ; is assumed, C3 6= ;. Thus, the
metric projection PC3 exists and x3 = PC3u3 is de�ned.
Repeating the same analysis, we can prove (a), (b), and (c).

De�ne un = PCnu 2 Cn. As the sequence fCng of sets is shrinking, that is,
Cn � Cn�1 � � � � � C1 = C, fung is a sequence in C. Observe that

(5.5) ku� unk � ku� qk

for all q 2 F (S) \ F (T ) and n 2 N. This follows from the de�nition un = PCnu
and the fact that q 2 F (S) \ F (T ) � Cn. Then, from (5.5), fung is bounded.
Next, we show that

(5.6) ku� unk � ku� un+1k
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for all n 2 N. As un = PCnu and un+1 = PCn+1u 2 Cn+1 � Cn, the inequality (5.6)
follows, which means that fku� unkg is monotone increasing. As fung is bounded,
fku� unkg is a convergent sequence in R.
We claim that the sequence fung is convergent in C, that is, there exists u 2 C

such that

(5.7) un ! u:

To prove this, we verify that fung is a Cauchy sequence in C. Let m;n 2 N such
that m � n. As un = PCnu and um = PCmu 2 Cm � Cn, using (2.4), we have

ku� unk2 + kun � umk2 � ku� umk2 :

Given that fku� unkg is convergent, it follows that un � um ! 0 as m;n ! 1.
Thus, fung is a Cauchy sequence in C. As C is closed in H, it is complete.
Consequently, there exists u 2 C such that un ! u as claimed.
Next, we demonstrate that fxng has the same limit point, that is,

(5.8) xn ! u:

As the metric projection is nonexpansive, from (5.7) and the assumption un ! u,
it follows that

kxn � uk � kxn � unk+ kun � uk
= kPCnun � PCnuk+ kun � uk
� kun � uk+ kun � uk ! 0:

Thus, (5.8) holds true as claimed. This implies that fxng is bounded. From (5.1),
fyng, fzng, and fwng are also bounded.
As fxng is convergent, the following expression holds:

(5.9) xn � xn+1 ! 0:

Next, observe that

(5.10) Xn � xn+1 ! 0:

Indeed, as xn+1 = PCn+1un+1 2 Cn+1; we have

kXn � xn+1k2(5.11)

� an kyn � xn+1k2 + bn kzn � xn+1k2 + cn kwn � xn+1k2

� an (kyn � xnk+ kxn � xn+1k)2 + bn (kzn � xnk+ kxn � xn+1k)2

+cn (kwn � xnk+ kxn � xn+1k)2 :

From (5.2) and (5.9), we obtain Xn�xn+1 ! 0 as claimed. From (5.9) and (5.10),
we have xn �Xn ! 0. As fxng is bounded, fXng is also bounded.
Note that

(5.12) kZn � qk � kzn � qk and kWn � qk � kwn � qk

for all q 2 F (S) \ F (T ) and n 2 N. The inequalities in (5.12) can be proved in a
similar manner as (3.5). We aim to demonstrate that

(5.13) yn � Zn ! 0 and yn �Wn ! 0:
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Let q 2 F (S) \ F (T ). From (2.1), (5.12), and (5.1), we obtain the following
expressions:

kXn � qk2

= kan (yn � q) + bn (Zn � q) + cn (Wn � q)k2

= an kyn � qk2 + bn kZn � qk2 + cn kWn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

� an kyn � qk2 + bn kzn � qk2 + cn kwn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

� an kxn � qk2 + bn kxn � qk2 + cn kxn � qk2

�anbn kxyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2

= kxn � qk2

�anbn kyn � Znk2 � bncn kZn �Wnk2 � cnan kWn � ynk2 :

As bncn kZn �Wnk2 � 0, we have

anbn kyn � Znk2 + ancn kyn �Wnk2

� kxn � qk2 � kXn � qk2

� (kxn � qk+ kXn � qk) jkxn � qk � kXn � qkj
� (kxn � qk+ kXn � qk) kxn �Xnk :

Recall that fxng and fXng are bounded and xn �Xn ! 0. Using the hypotheses
limn!1anbn > 0 and limn!1ancn > 0, we obtain in the limit as n ! 1 that
yn � Zn ! 0 and yn �Wn ! 0 as claimed.
Then,

(5.14) xn � Zn ! 0 and xn �Wn ! 0:

In fact, using (5.2) and (5.13), the following expression can be derived:

kxn � Znk � kxn � ynk+ kyn � Znk ! 0:

The second part in (5.14) can be similarly obtained.
From (5.8) and (5.14), it follows that Zn ! u and Wn ! u. As S and T satisfy

the condition (4.1), we obtain u 2 F (S) \ F (T ).
Our goal is to prove that xn ! bu. From (5.8), it is su¢ cient to show that

u
�
= lim

n!1
un = lim

n!1
xn

�
= bu �= PF (S)\F (T )u� :

Applying (5.5) for q = bu 2 F (S) \ F (T ), we have ku� unk � ku� buk for all
n 2 N. From (5.7), we obtain ku� uk � ku� buk. As u 2 F (S) \ F (T ) andbu = PF (S)\F (T )u, this indicates that u = bu. According to (5.8), we can state that
xn ! bu. This completes the proof. �

Remark 5.2. We compare Theorems 5:1 and 4:1 focusing on conditions (5:2) and
(4:3). In Theorem 5:1, the additional conditions xn� zn ! 0 and xn�wn ! 0 are
required. These assumptions are used in (5:11) when taking the limit as n!1.

From Theorem 5.1, the following corollary is obtained:
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Corollary 5.1 ([21]). Let C be a nonempty, closed, and convex subset of H. Let
S; T : C ! C be quasi-nonexpansive mappings satisfying the condition (4:1). Sup-
pose that F (S)\F (T ) 6= ;. Let f�ng, f�ng, f�ng, f�ng, and f�ng be sequences of
real numbers in the interval [0; 1] such that �n+�n+�n+�n+�n = 1 for all n 2 N
and �n ! 1. Let

�
�0n
	
, f�0ng, f�0ng,

�
�0n
	
, and

�
�0n
	
be sequences of real numbers

in [0; 1] such that �0n + �
0
n + �

0
n + �

0
n + �

0
n = 1 for all n 2 N and �0n ! 1. Let fang,

fbng, and fcng be sequences of real numbers in [0; 1] such that an+ bn+ cn = 1 for
all n 2 N, limn!1anbn > 0, and limn!1ancn > 0: Let fung be a sequence in H
such that un ! u (2 H). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,

(5.15)

C1 = C;

zn = �nxn + �nSxn + �nTxn + �n
1

n

n�1X
l=0

Slxn + �n
1

n

n�1X
l=0

T lxn;

wn = �
0
nxn + �

0
nSxn + �

0
nTxn + �

0
n

1

n

n�1X
l=0

Slxn + �
0
n

1

n

n�1X
l=0

T lxn;

Xn = anxn + bn
1

n

n�1X
l=0

Slzn + cn
1

n

n�1X
l=0

T lwn;

Cn+1 =
n
h 2 Cn : kXn � hk2 � an kxn � hk2 + bn kzn � hk2 + cn kwn � hk2

o
;

xn+1 = PCn+1un+1

for all n 2 N. Then, fxng converges strongly to an element bu in F (S) \ F (T ),
where bu = PF (S)\F (T )u.
Proof. First, we ascertain that (a) Cn is closed and convex, (b) F (S)\F (T ) � Cn
for all n 2 N, and (c) the sequences fxng ; fzng ; fwng ; fXng in C and fCng are
de�ned properly. To this end, we �rst consider the case of n = 1.
(i) Given x1 2 C1 (= C), the elements z1, w1, and X1 in C and the set C2 (� C1)

are de�ned following the rule (5.15). As C1 is closed and convex, C2 is also closed
and convex, as discussed in Theorem 5.1. We prove that F (S) \ F (T ) � C2.
Arbitrarily select q 2 F (S) \ F (T ) (� C1). Then, it follows from (2.2) that

kX1 � qk2 = ka1 (x1 � q) + b1 (z1 � q) + c1 (w1 � q)k2

� a1 kx1 � qk2 + b1 kz1 � qk2 + c1 kw1 � qk2 ;

which implies that q 2 C2. Therefore, F (S) \ F (T ) � C2 as claimed. From the
assumption F (S) \ F (T ) 6= ;, we have C2 6= ;. From this, the metric projection
PC2 is guaranteed to exist and x2 = PC2u2 is de�ned.
(ii) Given x2 2 C2 (� C1 = C), z2; w2; X2 (2 C) and C3 (� C2 � C1) are de�ned

by the iterative rule (5.15). We can verify that C3 is closed and convex and F (S)\
F (T ) � C3. As F (S) \ F (T ) 6= ; is assumed, it follows that C3 6= ;. Thus, the
metric projection PC3 exists and x3 = PC3u3 is de�ned.
By repeating this reasoning, we can ascertain that (a), (b), and (c) hold true as

claimed.
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From Theorem 5.1, it is su¢ cient to demonstrate that kzn � qk � kxn � qk and
kwn � qk � kxn � qk for all q 2 F (S) \ F (T ) and n 2 N, with xn � zn ! 0 and
xn�wn ! 0. First, let us prove that kzn � qk � kxn � qk and kwn � qk � kxn � qk.
Choose q 2 F (S) \ F (T ) and n 2 N. As S and T are quasi-nonexpansive, we can
prove that

(5.16)






 1n
n�1X
l=0

Slxn � q





 � kxn � qk and






 1n
n�1X
l=0

T lxn � q





 � kxn � qk

in the same way as (3.5). Using these inequalities yields

kzn � qk

=






�nxn + �nSxn + �nTxn + �n 1n
n�1X
l=0

Slxn + �n
1

n

n�1X
l=0

T lxn � q







� �n kxn � qk+ �n kSxn � qk+ �n kTxn � qk

+�n






 1n
n�1X
l=0

Slxn � q





+ �n






 1n
n�1X
l=0

T lxn � q







� kxn � qk :
Similarly, the expression kwn � qk � kxn � qk can be proved.
De�ne un � PCnu 2 Cn. Then, there exists u 2 C such that un ! u, as

indicated in (5.7) in the proof of Theorem 5.1. Furthermore, fxng also converge to
u; see (5.8). Thus, fxng is bounded. As S and T are quasi-nonexpansive, fSxng
and fTxng are also bounded. Indeed, for q 2 F (S), it holds that

kSxnk � kSxn � qk+ kqk(5.17)

� kxn � qk+ kqk :
As fxng is bounded, fSxng is also bounded. Similarly, fTxng is also bounded. Fur-
thermore, the inequalities in (5.16) imply that

n
1
n

Pn�1
l=0 S

lxn

o
and

n
1
n

Pn�1
l=0 T

lxn

o
are bounded.
We demonstrate that xn � zn ! 0 and xn �wn ! 0. As �n ! 1, it follows that

�n; �n; �n; �n ! 0. Therefore,

kxn � znk

=






xn �
 
�nxn + �nSxn + �nTxn + �n

1

n

n�1X
l=0

Slxn + �n
1

n

n�1X
l=0

T lxn

!





� (1� �n) kxnk+ �n kSxnk+ �n kTxnk+ �n






 1n
n�1X
l=0

Slxn






+ �n





 1n

n�1X
l=0

T lxn







! 0:

As �0n ! 1, we obtain that xn�wn ! 0 as claimed. From Theorem 5.1, the desired
result follows. �

6. Derivative Results

This section presents two convergence results as applications of Theorem 5.1.
Although Theorems 3.1 and 4.1 can also be applied, we exclusively refer to Theorem
5.1 to save space. First, the following corollary is obtained:
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Corollary 6.1. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S; T : C ! C be quasi-nonexpansive mappings satisfying the condition
(4:1). Suppose that F (S) \ F (T ) 6= ;. Let fang, fbng, and fcng be sequences
of real numbers in the interval [0; 1] such that an + bn + cn = 1 for all n 2 N,
limn!1anbn > 0, and limn!1ancn > 0. Let f�ng and f�ng be sequences of real
numbers in [0; 1] such that �n ! 1 and �n ! 1. Let fung be a sequence in H such
that un ! u (2 H). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,(6.1)

C1 = C;

zn = �nxn + (1� �n)Txn;
yn = �nzn + (1� �n)Szn;

Xn = anyn + bn
1

n

n�1X
l=0

Slyn + cn
1

n

n�1X
l=0

T lzn;

Cn+1 =
n
h 2 Cn : kXn � hk2 � (an + bn) kyn � hk2 + cn kzn � hk2

o
;

xn+1 = PCn+1un+1

for all n 2 N. Then, fxng converges strongly to an element bu in F (S) \ F (T ),
where bu = PF (S)\F (T )u.
Proof. First, we verify that (a) Cn is closed and convex, (b) F (S) \ F (T ) � Cn
for all n 2 N, and (c) the sequences fxng ; fzng ; fyng ; fXng ; fCng are properly
de�ned. We begin with the case of n = 1.
(i) Given x1 2 C1 (= C), the elements z1; y1; X1 2 C and set C2 (� C1) are

de�ned following the iterative rule outlined in (6.1). Note that

kX1 � hk2 � (a1 + b1) ky1 � hk2 + c1 kz1 � hk2(6.2)

() 0 � (a1 + b1) ky1k2 + c1 kz1k2 � kX1k2 � 2 h(a1 + b1) y1 + c1z1 �X1; hi :

As C1 is closed and convex, from (2.5) and (6.2), C2 is also closed and convex. We
demonstrate that F (S) \ F (T ) � C2. Let q 2 F (S) \ F (T ) (� C1). It follows
from (2.2) that

kX1 � qk2 = ka1 (y1 � q) + b1 (y1 � q) + c1 (z1 � q)k2

� a1 ky1 � qk2 + b1 ky1 � qk2 + c1 kz1 � qk2

= (a1 + b1) ky1 � qk2 + c1 kz1 � qk2 ;

which implies that q 2 C2. Hence, F (S) \ F (T ) � C2 as claimed. From the
assumption F (S)\F (T ) 6= ;, we have C2 6= ;. Consequently, the metric projection
PC2 exists and x2 = PC2u2 is de�ned.
(ii) Given x2 2 C2 (� C1 = C), z2; y2; X2 (2 C) and C3 (� C2 � C1) are de�ned

by the iterative rule (6.1). We can thus verify that C3 is closed and convex. Fur-
thermore, F (S) \ F (T ) � C3, given that S and T are quasi-nonexpansive. As
F (S)\F (T ) 6= ;, C3 is also nonempty. Thus, the metric projection PC3 exists and
x3 = PC3u3 is de�ned.
Through a similar analysis, we can prove (a), (b), and (c).
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From Theorem 5.1, it is su¢ cient to demonstrate that kyn � qk � kxn � qk and
kzn � qk � kxn � qk for all q 2 F (S) \ F (T ) and n 2 N, with xn � yn ! 0 and
xn � zn ! 0.
First, observe that kyn � qk � kxn � qk and kzn � qk � kxn � qk. Let q 2

F (S)\F (T ) and n 2 N. As T is quasi-nonexpansive, the following expression can
be derived:

kzn � qk = k�n (xn � q) + (1� �n) (Txn � q)k(6.3)

� �n kxn � qk+ (1� �n) kTxn � qk
� �n kxn � qk+ (1� �n) kxn � qk = kxn � qk :

Using this, we obtain

kyn � qk = k�n (zn � q) + (1� �n) (Szn � q)k
� �n kzn � qk+ (1� �n) kSzn � qk
� �n kzn � qk+ (1� �n) kzn � qk
= kzn � qk � kxn � qk

as claimed.
De�ne un = PCnu 2 Cn. Similar to the proof of Theorem 5.1, we can show that

there exists u 2 C such that un ! u and xn ! u, as indicated in (5.7) and (5.8) in
the proof of Theorem 5.1. As fxng is convergent, it is bounded. Moreover, as T is
quasi-nonexpansive, fTxng is also bounded, as indicated in (5.17) in the proof of
Corollary 5.1. Furthermore, from (6.3), fzng is bounded. Therefore, fSzng is also
bounded as S is quasi-nonexpansive.
We show that xn � yn ! 0 and xn � zn ! 0. As �n ! 1, it follows that

kxn � znk = kxn � (�nxn + (1� �n)Txn)k(6.4)

� (1� �n) kxn � Txnk ! 0:

Using �n ! 1 and (6.4), we have

kxn � ynk = kxn � (�nzn + (1� �n)Szn)k
= k�n (xn � zn) + (1� �n) (xn � Szn)k
� �n kxn � znk+ (1� �n) kxn � Sznk ! 0

as claimed. From Theorem 5.1, the desired result follows. �

The iterative scheme in Corollary 6.1 is a three-step type. For three-step iterative
methods, see Noor [31], Dashputre and Diwan [7], Phuengrattana and Suantai [32],
and Chugh et al. [6]. Set �n = 1 for all n 2 N in Corollary 6.1. Then, zn = xn,
and the following iterative scheme can be obtained:

yn = �nxn + (1� �n)Sxn;

Xn = anyn + bn
1

n

n�1X
l=0

Slyn + cn
1

n

n�1X
l=0

T lxn;

Cn+1 =
n
h 2 Cn : kXn � hk2 � (an + bn) kyn � hk2 + cn kxn � hk2

o
;

xn+1 = PCn+1un+1;
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where x1 = x 2 C is given and C1 = C. This scheme represents a two-step
iterative scheme. The next corollary also provides a two-step iterative method to
approximate a common �xed point:

Corollary 6.2. Let C be a nonempty, closed, and convex subset of H. Let S; T :
C ! C be quasi-nonexpansive mappings satisfying the condition (4:1). Suppose that
F (S) \ F (T ) 6= ;. Let fang, fbng, and fcng be sequences of real numbers in [0; 1]
such that an + bn + cn = 1 for all n 2 N, limn!1anbn > 0, and limn!1ancn > 0.
Let f�ng, f�ng, f�ng, and f�ng be sequences of real numbers in [0; 1] such that
�n+�n+ �n+ �n = 1 for all n 2 N and �n ! 1. Let fung be a sequence in H such
that un ! u (2 H). De�ne a sequence fxng in C as follows:

x1 = x 2 C : given,(6.5)

C1 = C;

yn = �nxn + �nSxn + �nTxn + �nT
2xn;

Xn = anyn + bn
1

n

n�1X
l=0

Slxn + cn
1

n

n�1X
l=0

T lxn;

Cn+1 =
n
h 2 Cn : kXn � hk2 � an kyn � hk2 + (bn + cn) kxn � hk2

o
;

xn+1 = PCn+1un+1

for all n 2 N. Then, fxng converges strongly to an element bu in F (S) \ F (T ),
where bu = PF (S)\F (T )u.
Proof. At the outset, we verify that (a) Cn is closed and convex, (b) F (S)\F (T ) �
Cn for all n 2 N, and (c) the sequences fxng, fyng, fXng, and fCng are properly
de�ned.
(i) Given x1 2 C1 (= C), the elements y1 and X1 in C and the set C2 (� C1) are

de�ned following the iterative rule (6.5). In the de�nition of C2,

kX1 � hk2 � a1 ky1 � hk2 + (b1 + c1) kx1 � hk2

() 0 � a1 ky1k2 + (b1 + c1) kx1k2 � kX1k2 � 2 ha1y1 + (b1 + c1)x1 �X1; hi :
From (2.5), C2 is closed and convex as C1 is closed and convex. We demonstrate
that F (S) \ F (T ) � C2. Let q 2 F (S) \ F (T ) (� C1). It follows from (2.2) that

kX1 � qk2 = ka1 (y1 � q) + b1 (x1 � q) + c1 (x1 � q)k2

� a1 ky1 � qk2 + b1 kx1 � qk2 + c1 kx1 � qk2

= a1 ky1 � qk2 + (b1 + c1) kx1 � qk2 :
This means that q 2 C2. Thus, we obtain F (S) \ F (T ) � C2 as claimed. From
the assumption F (S)\F (T ) 6= ;, C2 is also nonempty. We can thus conclude that
the metric projection PC2 exists and x2 = PC2u2 is de�ned.
(ii) Given x2 2 C2 (� C1), two elements y2 andX2 in C and the set C3 (� C2 � C1)

are de�ned by the rule (6.5). We can prove that C3 is closed and convex and
F (S) \ F (T ) � C3. According to the assumption F (S) \ F (T ) 6= ;, C3 6= ;.
Therefore, the metric projection PC3 exists and x3 = PC3u3 is de�ned.
Through a similar analysis, we can ascertain that (a), (b), and (c) hold true.
Our aim is to prove that kyn � qk � kxn � qk for all q 2 F (S)\F (T ) and n 2 N

and that xn � yn ! 0. Choose q 2 F (S) \ F (T ) and n 2 N arbitrarily. As S and
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T are quasi-nonexpansive, it holds that

kyn � qk
=



�nxn + �nSxn + �nTxn + �nT 2xn � q


� �n kxn � qk+ �n kSxn � qk+ �n kTxn � qk+ �n



T 2xn � q


� �n kxn � qk+ �n kxn � qk+ �n kxn � qk+ �n kxn � qk
= kxn � qk :

Therefore, the part kyn � qk � kxn � qk is proved.
De�ne un = PCnu 2 Cn. Similar to the proof of Theorem 5.1, we can show

that there exists u 2 C such that un ! u and xn ! u; see (5.7) and (5.8). As
fxng is convergent, it is bounded. As S and T are quasi-nonexpansive, fSxng and
fTxng are also bounded. Furthermore,

�
T 2xn

	
is also bounded. Indeed, as T is

quasi-nonexpansive, 

T 2xn

 � 

T 2xn � q

+ kqk
� kTxn � qk+ kqk
� kxn � qk+ kqk :

As fxng is bounded,
�
T 2xn

	
is also bounded as claimed.

We demonstrate that xn � yn ! 0. As �n ! 1, it follows that �n; �n; �n ! 0.
Therefore,

kxn � ynk =


xn � ��nxn + �nSxn + �nTxn + �nT 2xn�



� (1� �n) kxnk+ �n kSxnk+ �n kTxnk+ �n


T 2xn

! 0:

From Theorem 5.1, we obtain the desired result. �

For sequences like yn = �nxn + �nSxn + �nTxn + �nT
2xn, see Maruyama et al.

[29], Kondo and Takahashi [24], and Singh et al. [34].

7. Concluding Remarks

In this study, we investigated iterative scheme generating methods using mean-
valued sequences for �nding common �xed points of nonlinear mappings. Our
contributions include enhancements to several results from prior research. This
method is applied for the �rst time to the Martinez-Yanes and Xu approximation
method. The proposed method can generate various types of iterative schemes,
including two- and three-step iterative schemes.
The key observations and remarks are as follows: First, our analysis highlights

the di¤erences between the shrinking projection method of Takahashi, Takeuchi,
and Kubota (Theorem 4.1) and the Martinez-Yanes and Xu (Theorem 5.1). The
required conditions di¤er slightly depending on the technical circumstances of the
proofs; see Remark 5.2. Second, Nakajo and Takahashi�s CQ method can be ex-
tended in a similar manner, although this study focuses on the shrinking projection
method and Mann type method. Third, our emphasis is on quasi-nonexpansive and
mean-demiclosed mappings. This class of mappings contains more general types of
mappings than nonexpansive mappings. For further details regarding this aspect,
readers may refer to the Appendix in the work of Kondo [22]. Finally, although
this article addresses common �xed point theorems for two nonlinear mappings, the
methods can be extended to scenarios involving �nitely many mappings.
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