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Group Completions I : An Observation from
a Category-Theoretical Point of View
on the Ordinary Group Completions
of Commutative Monoids

Masahiko NIWA

Summary

In this series on group completions various categorical constructions of universal group-
like objects from symmetric monoidal objects will be studied. This paper is the first part
in which we deal with the ordinary group completions of commutative monoids and observe
some other aspects than the ordinary Grothendieck group construction. The relations of
the ordinary construction with colimits and lax colimits over the translation category of a
commutative monoid are estéblished. Further we consider the commutativity of the group

completion construction with limits and lax limits over a group (. e. Galois descent).
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8 1. The ordinary group completions of commutative monoids

Throughout this paper the composition law of every commutative monoid is written
additively + and the identity element is written 0. On the other side we denote the compo-
sition law of a (not neccesarily commutative) group multiplicatively and its identity ele-
ment by 1.

Let M be a commutative monoid. The ordinary (algebraic) group completion K (M) is as-
sociated with M. In detail we put

KM)=MXM/~
where ~ is an equivalence relation on M X M defined as follows. For

ab), cdEeEMXM
@b ~(@d cat+d+f=c+b+f IfEM
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C(a, b) denotes the equivalence class of (g, b) in K(M). The composition law of K (M) is de-
fined by

C(a, b) +C(c,d)=Cla+c b+ad).

Then K(M) is a commutative monoid with C(0, 0) as the identity element and further be-
comes a commutative group since every element C(ag, b) has an inverse element C(b, a).
When i: M - K(M) denotes the homomorphism defined by

i@ =C(, a) for a €M,

(K(), i) is endowed with the following ‘universal’ property: If f: M — L is any homo-
morphism of M into a commutative group L, there is an unique homomorphism g: K(M) —
L satisfying f = g »i. That is to say f factors uniquely through K (M).

A submonoid N of a monoid M is called cofinal if for any a € M there is an element b of
M such that @ + b € N. Let N be a cofinal submonoid of a monoid M. We define in the same
manner as above

Ky(M) =N XM/~

where an equivalence relation ~ and classes C( , ) are as above. Then Ky(M) is also a com-
mutative group. Remark that the inverse elemnt of C(a, b) fora € N, b € M is given by
C(b+c, a+c) where c € M such that b+¢ € N. Moreover if C(a, b) is any element of
KD, by taking ¢ € M such that a + ¢ € N one has C(g, ) =Cla+¢, b+¢) in K(M) and
Cla+c b+c) € Ky(M). These imply the following well-known fact.

Proposition 1.1. If N is a cofinal submonoid of a monoid M there is an isomorphism of commu-
tative groups

Kx(M) = K(MD.

Let f: M — L be a homomorphism of commutative monoids. Then by applying the universal-
ity of (K(M), ix) to the composed homomorphism i, * f a homorphism K (f) : K(M) — K(L)
of their group completions is induced. If f is surjective, one deduces easily that K(f) is also sur-
jective. But we have to remark that though f is injective K(f) is not neccesarily injective, be-
cause C.(f(a@), f(b)) = 0 does not imply Cy(a, b) =0.

§ 2. Colimits and lax colimits over the translation
categories of commutative monids

For a commutative monid M we will define its translation category M. The objects of M
are all elements of M and a morphism of Mfromutov (w, v € M) is a pair. (u, w) of ele-
ments of M such that u + w =v.

We need to investigate some properties of translation categories. We shall use mainly
the terminology on category theory in MacLane [4]. The category M has an initial object
0, hence it becomes a cofiltered category. Further we can show it is filtered.

Lemma 2.1. The translation category M of a commutative monoid M is cofiltered and filtered.
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Proof. For any two objects u, v of M there are two morphisms (v, v), (v, u) of M with the
same target #« +v. And for two morphisms (%, v,), (%, v») of M from the same souce % to the
same target w there is a morphism (w, ) of M from w to w + u such that two composed mor-
phisms coincide ;

w, w) » (u, v) = (@, w) = (w, w) » (u, vy).

These two facts show that M is a filtered category. O
A homomorphism f: M — L of commutative monoids induces in a natural manner a
functor f: M — L of their translation categories, A functor F: I — J of categories is called
final (resp. right cofinal) if for any object j of J the right fiber of F at j is non-empty and con-
nected (resp. contractible) asin [4] IX-3 (resp. as the dual notion of [1] XI-9. 1).

Lemma 2.2. Let N be a submonoid of a commutative monoid M. 1: N — M denotes the induced
Junctor of the translation categories from the inclusion homomorphismi: N — M. Then the fol-
lowing three statements are equivalent.

(1) N is a cofinal submonoid of M.
(2) 1tis a right cofinal functor.
(3) 1is a final functor.

Proof. It is trivial that (2) implies (3). For an object uo(€ M) of M the right fiber of 7
at u, is the category with the pairs (%, w) of ¥« € N, w € M such that u; +w = u as the ob-
jects, A morphism from (u;, wy) to (ue, wy) in the right fiber at u, is represented by an ele-
ment v € N such that v + w, = w,, which implies v + u; = u,. Now suppose N is not cofinal
in M. Then there is an object uo(€ M) of M such that the right fiber at u, is empty, which
shows ¢ is not a final functor. It follows that (3) implies (1).

Finally assume that N is a cofinal submonoid of M. We mention that for every object ug

(€ M) of M the right fiber of 7 at uy is a filtered category, hence contractible,

(a) It follows immediately from the cofinality of N that all right fibers are non-empty.

(b) Take any two objects (u,, wi), (uz, w;) of the right fiber at uy, which satisfy u;, u, €
N, up +w; =u; and wo + w, = u,. Since wy + u; = w, + wp + ws, = u; + w,, we have two mor-
phisms ;1 (w1, w) = (i + s, w1+ wy), ur: (uz, wo) — (uy + uy, w1 + wy) with the same
target.

(c) Given two morphisms vi, v2: (ui, wy) — (uy, w,) one has w;, + v, = w, + v, = w, Consid-
er a morphism u;: (uz, wy) — (w1 + 2, 1 + wy) of the right fiber at %,. Since u; + v, = uo
+w, + v = uy + w, +v: =u, + v, the two compositions u; * v; and %, * v» coincide.

It follows from the above (a) ~ (c) that the right fiber at u, is filtered. O
(Set) denotes the category of sets as objects and maps as morphisms and (Cat) denotes
the 2-category of small categories as objects, functors as 1 -morphisms and natural transfor-
mations as 2-morphisms. A set can be considered as a category of which the objects are its el-
ements and the morphisms consist only of the identity maps. Thus (Set) is contained in
(Cat).

It is known that if f: I — J is a final functor and F: J — (Set) is a functor then there is a
bijection
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Colim F » f = Colim F.

(See [4] IX—9 Theorem 1.) It is also known that if f: I — J is a right cofinal functor and
F:J— (Cat) a pseudo functor then there is a homotopy equivalence of small categories

Lax Colim F « f = Lax Colim F.

(Consider the dual statement of [1] X I-9. 2 Cofinality Theorem.)

Now let N be a cofinal submonoid of a commutative monoid M. We will consider a
functor A from the translation category N of N to (Set) defined by sending any object
u(E N) of N to the same set M and a morphism (%, v) (ENXM) of NtoamapM —> M, m
> m + v, and a pseudo functor ¢ from N to (Cat) is defined by composing of 2 with the inclu-
sion of (Set) into (Cat). From Lemma 2.2 and the above remarks one has

Proposition 2.3. Let M, N, A and p be as above. »
(1) Colim 2 is independent of the choice of a cofinal submonoid N up to bijection.
(2) Lax Colim i is independent of the choice of a cofinal submonoid N up to homotopy equiv-
alence.

Let's make Colim A and Lax Colim g in an explicit form. Take a map fu.: A1 () =M —
Ky (M) defined by sending w to (w, w). Since (Ky(M), {f.}) satisfy an universal property
with respect to the system over N, we have the following
Proposition 2.4. Let M, N and A be as above. Then there is a bijection

Colim 2 = Kx(M).

In general lax colimits are known to be given by Grothendieck construction. (See for exam-
ple [11, [2], [6].) Lax Colim s is a cofibered category ¢ [ N over N. This category has
pairs (4, w) of ¥ € N and w € M as objects and a morphism from (1, wy) to (uz, w2) is rep-
resented by v € N such u; +v =uz, w1 + v =1w..

For a small category C the set 7,(C) of connected components is defined as follows;

7(C) = (the set of objects of C)/ ~

where for two objects a, b the condition on @ ~ b is that there are finitely many morphisms
connecting a with b; e. g.
Then it is easy to see the following

Proposition 2.5. Let M, N and ¢ be as above. There is a bijection

mo(Lax Colim 1) = Kx(M).
§ 3. Limits and lax limits over groups

The general theory of this subject was studied in full detail in my paper {6]. Here a
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very special case is dealt with.

We regard a group G as a category G (used the same letter) with the only one object »
and with the elements of G as morphisms. Given a right G—set X we define a functor ¢ of G
into (Set) and a pseudo functor 7 of G into (Cat). ¢ is defined by

o (*) = X on objects and
0(): X—X, o(G)x)=x for s € G x € X on morphisms.

z is the composed (pseudo) functor of o with the inclusion of (Set) into (Cat).
First let’s consider Lim ¢. Putting

Xe={xeX;x*=x VseEG}

the inclusion map of X¢ into X has an universal property for the functor o, hence we have

Proposition 3.1. Let G, X and ¢ be as above. Then there is a bijection
Lim o = XS,
Next we investigate Lax Colim . This is given by the Grothendieck construction ¢ f G

which is a cofibered category over G. The objects of ¢ [ G are elements of X and there is
the only morphism of grade s € G fromx toy (x, y € X) if x* =y, hence

Proposition 3.2. Let G, X and t be as above. Then there is a bijection
m(Lax Colim ©) = X/G ( = the set of G-orbits of X).

We consider finally Lax Lim 7. It is known from (6] that it is given by the category
Carte(G, T § G) of cartesian section functors of the cofibered categories ¢ §f G over G. But
since X is a discrete category in our case, it has a simple form.

Proposition 3.3. Let G, X and t be as above. Then there is an equivalence of categories

Lax Lim © = X considered as a category.
§ 4. The commutativity of group completions with (lax) limits over a group

The problem considered in this section is whether the group completions commute (lax)
limits over a group i e. the problem of Galois descent. (See [6].) In the case of commuta-
tive G-monoids M handled in this paper we obtain the affirmative results under the assump-
tion that a group G is finite.

In what follows let G be a finite group and M a commutative G-monoid in which the
action of G is from right asin §2.

We consider first the ordinary group completions and the limits over G. The ordinary
group completion K(M) of M becomes a commutative G-group by defining the natural
action of G on K(M) by

(u, w)'= @', w?) for sEG u weEM.
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Theorem 4.1. Let G and M be as above. There is a bijection

KQM©) = K(M)S.

Proof. The inclusion homomorphism of M€ into M induces a homomorhism k: K(M%) —
K(M) of commutative groups. Let's verify that k# is injective and Im h=KM)S.
C(, ) (resp. C’'(,)) denotes the equivalence classes in K(M) (resp. in K(M®)). Suppose
h(C’' (m, n)) =C (0, 0) for m, n € MC. Then C(m, n) = C(0, 0) hence there is an element f of
M such that f+m=f+n Put f°=Xec f then & M® and f°+m =+ n, hence C'(m, n)
= (C’(0, 0). Thus Ker h consists of the only identity element, which shows % is injective.

Next since C(m, n)*=C0@n®, n°) =C(m, n) for any s € G, m, n € M°, we have Im h C
KQDe.

Finally we must show K(M)¢ C Im h. It is sufficient to verify that for any C(y, v) €
K(QDC there are m, n € MC such that Clx, v) =C(m, n). If Clu, v) .€ KWM)E, Cly, v)*=
C(u, v) for any s € G. This means that there is an element f; of M such that fi+uw+v=/f
+u + v* for every s € G. By taking f°= Zie6(Zsec fs)' we have fE MC and fP+us +v=f°
+ut+vforeverys € G. Putu’= S cotf, v°= Tsec t’, W= Dsegss ¥ and 2 = Zseq s21 U
thenu +w=u°€ M®and v +z=v°E M Consider x°=f°+ u°+ v + w then for any s € G

=frurtwtvtw=Lrutvrtwtw =L +u’+ v+ w = G0,
hence x°€ M Further one obtains
X tu=f+u’+v+twt+u=f£ +2u° +u

If we putm =f°+ 2u°, n =x° then m, n € M¢ and C(y, v) = C(m, n) as required. O

For a commutative G-monoid M we define a functor v of M X G into (Set) as follows;
on objects v (&, *) =M and on morphisms v(v, s): M — M, m — v+ m°. And further we
have a (pseudo) functor g of M X G into (Cat) by composing v with the natural inclusion
of (Set) into (Cat). It is known from [4] IX-2 Theorem 1 that finite limits commute
with filtered colimits. This implies that there is a bijection

Colima6yr (Limeg v) = Limg (Colimg v). ;

But this follows the above Theorem 4. 1 from Proposition 2. 4 and Proposition 3. 1.

Finally we show that for the (pseudo) functor g lax colimits over the translation catego-
ries of commutative monoids commute with lax limits over a group (considered as a catego-
ry). '

Theorem 4.2. Let G be a finite group and M a commutative G-monoid. u denotes the (pseudo)
Sfunctor of M X G into (Cat) as above. Then there is a homotopy equivalence

Lax Colimo6y,~ (Lax Limg 1) = Lax Limc(Lax Colimyg ).

Proof. It follows from Proposition 3.3 that Lax Lim¢ ¢ is a set M¢ considered as a category,
therefore the category on the left-hand side is nothing but the lax colimit over the transla-
tion category (M®)" of M€ for the commutative monoid M®. (See §2.) Lax Colimy y be-
comes a G—category in the sense of [ 6] by taking (x4, w)* = (&°, w*) on objects. So the catego- .
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ry on the right-hand side is the category of cartesian section functors from G to the fibered cat-

egory over G associated with the G-category Lax Colimy 1. A denotes this category and let

us make A in an explicit form. The objects of A are represented by the triples (u, w,

(@)see) foru, w, a; € M, satisfying « + a, = u*, w +a, = w* for any s € G, which implies the

1 -cocycle conditions a; =0, ax = (a,)'+a, for s, t € G. The morphisms of A from (x, w,

(@) to (W, w', (b)) are represented by v € M satisfying u +v =1/, w + v =w’ and a, + v*

=v+ b for any s € G. We shall consider two subcategories of A.

B denotes the full subcategory of A consisting of objects (4, w, (a,)) satisfying u & M°.
We must remark that under our assumption that G is a finite group the submonoid MF¢ is
cofinal in M since for any u € M u+ T,eq o+ #° € MC. It is easy to see that the category B
is nothing but the category of cartesin section functors from G to the fibered category over
G aésociated with the lax colimit over the cofinal submonoid M® of u. It follows from Proposi-
tion 2.3 (2) that B is homotopy equivalent to A.

C denotes the full subcategory of A consisting of objects (u, w, (as)) satisfying a, = 0 for
any s € G. Since this condition implies », w € M C is contained in B. Also v(€ M) represent-
ing a morphism of C belongs to M®. Thus C is equivalent to the category on the left-hand
side. Therefore we must show that the inclusion functor j of C into B is a homotopy equiva-
lence. To see this it is sufficient to verify that for any object (uo, wo, (@s)) of B the right
fiber D of j at (uo, wy, (as)) is a cofiltered or filtered category, hence contractible.

If (uo, wo, (as)) is an object of Ci.e. a, =0 for any s € G then the right fiber D becomes
the category of objects of C under (uo, wo, (0)), consequently it has an initial object and so it
is cofiltered.

Otherwise we shall show that the right fiber D is filtered. Note that the objects of the
right fiber D of j at (uy, wo, (a;)) consist of morphisms of B from (u,, wo, (a;)) to objects
(uy, wy, (0)) of C which is represented by v, € M satisfying uo + v, = 1, wo +v; = w; and as
+ v’ =, for any s € G, and that a morphism of D from v;: (w, wo, (@s)) — (1, wy, (0)) to
v2: (o, wo, (@) — (uz, wy, (0)) is a morphism 2: (u, wi, (0)) — (ug, ws, (0)) of C such
thatz € M®, z+ v, =,

(a) Since uo + as = uy, wo+ a; = we* imply (wo + 1)* = we® + us = wo + as+uo=wy+ up, as+
us® = as +uy = up for any s € G, there is an object uy: (ug, wo, (@s)) — (2uo, wo + 1y, (0)).
Hence the right fiber D is non-empty.

(b) Given any two objects v;: (uo, wo, (as)) = (a1, wi, (0)), vz: (o, wo, (as)) — (u, w,,
(0)) of D, we can define two morphisms uo + #5: (uy, wy, (0)) — (uy + uo + 1z, w; + uo +
w2, (0)), uo+us: (uz, wa, (0)) — (uy + uo+ 4y, Wy + e+ 1w, (0)) of D. Since wy + 1o + s
=Wo + v+t + U = wo + uy + 1y = wy + v2 + 1o+ uy = wy +uy + u;, the above two mor-
phisms wu + u,, 1o+ u, have the same target. Further since (uo+ #3) » v, = vt ugt+u=
w+uz = uy + up + v = (wo + uy) * vz, the morphism u; + us: (o, wo, (@) — (uy + 1 + us,
wi + uy + uy, (0)) of B becomes an object of D. Thus for any two objects of D we obtain
two morphisms from those to some object of D.

() Given two objects v1: (uy, wo, (a5)) — (1, wy, (0)), va: (uo, wo, (@) — (uz, ws, (0)) of
D and two morphisms zi, z2: (u1, wi, (0)) = (4, ws, (0)) of D which satisfy v; + uo = u;,
Uit Wo = Wi, th + 2 =1uy, wy +2;=w, for i =1, 2, we can define an object up + v; + v2: (uo,
wo, (@) = (uy + us, uy+ wy=u; +w,, (0)) of D and a morphism u,: (uz, w,, (0)) = (u,
+uz, ur+w, (0)) of D. Thensince wy+zi=up+v1+2z1=up+vs=1g+vi+2,=u +2,
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the two compositions u; * 21, %1 * 22: (1, wi, (0)) = () + uz, uy +wz, (0)) coincide.
It follows from (a) ~ (¢) that the right fiber D is a filtered category as required. O

Remark 4.3. The assumption of finiteness of G in Theorem 4.2 can be improved, for we

only used the fact that M€ is cofinal in M in the proof of Theorem 4.2. As an improved as-

sumption we can take the following condition;

a group G acts finitely on a commutative monoid M i. e.

[G: G < oo forany u €& M,

where G, denotes the isotropic subgroup of u in G. We note also that since Theorem 4.2

implies Theorem 4.1 by applying 7, the above improvement can be applied to Theorem 4. 1.
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