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] |Introduction

In this article, we denote by H a real Hil-
bert space with an inner product <-, ->. Norm
is defined as ||x|| =v<x, x> for an element x of
H. The following is a simple version of the fixed
point theorem by Kirk [10], Browder [3] and
Gohde [4]:

Theorem 1 Let C be a nonempty, closed, convex,
and bounded subset of a real Hilbert space H.
LetT:C»>Chea nonexpansive mapping, that

s,

Tz —Ty| < |z —y| for allz,y € C. (1)

Then, T has at least one fixed point.

A fixed point v € C of a mapping 7 indi-
cates that 7o = v. Theorem 1 has been extended
by many researchers. In particular, various
types of mappings have been proposed. Nozn-
spreading mappings [12] and hybrid mappings
(24] are defined by the conditions

2| Te — Ty|> <|le - Ty|* + | Tz — y||* and ()
< 2 2 2 2
817w — Tyl < o — yIP + o = Tyl> + [Tz — oI, (3)

respectively. Nonspreading mappings were pro-
posed out of necessity in light of optimizing
problems. Although a nonexpansive mapping
is continuous, nonspreading and hybrid map-
pings are not necessarily continuous; for exam-
ples of such mappings, see Igarashi et al. [6] or
recent articles by Kondo [14, 17]. In 2010, these
types of mappings (1)-(3) were unified by Ko-
courek et al. [11] as a generalized hybrid
mapping. If there exist ¢, € R such that

a7z~ Tyl + (1 - a) |z — Ty|? (4)

< BTz —y|>+ 1= B) ||z — yl?
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forall x,y € C, then T': C» H is called gener-
alized hybrid, where R is the set of real
numbers. If = 1 and 8 = 0, then a generalized
hybrid mapping is nonexpansive. Hence, a
nonexpansive mapping is a special case of gen-
eralized hybrid mappings. Similarly, a class of
generalized hybrid mappings contains non-
spreading mappings (2) as a case of z = 2 and j8
= 1 and hybrid mappings as a case of 2 = 3/2
and 8 = 1/2. A class of generalized hybrid map-
pings also includes A-hybrid mappings; see
Aoyama et al. [2]. Kocourek et al. [11] estab-
lished a fixed point theorem that asserts the
existence of at least one fixed point of a gener-
alized hybrid mapping. They also studied how
to construct sequences that converge to a fixed
point.

Theorem 1 is further studied for more gen-
eral types of mappings. A mapping 7: C» Cis
called 2-generalized hybrid [21] if there exist a1,
B1, 22, B2, € R such that

g ||T2z - TyH2 +ai|Te — TyH2 +(1—a;—a)
|z = Tyl? < B, ||T2% — y||* + By | T2 — y|)? (s)
+ (1= By = B) [z - y))?

for all x, y € C. Substituting 22 = f2 = 0 into
(5), we obtain the condition of generalized hy-
brid mappings (4) and thus, the class of
2-generalized hybrid mappings contains gener-
alized hybrid mappings as special cases. Hojo
et al. [s] presented examples of 2-generalized
hybrid mappings that are not generalized hy-
brid; see also Kondo [14, 17]. Maruyama et al.
[21] demonstrated a fixed point theorem and
convergence theorems that approximate fixed
points for this type of mappings in the frame-
work of real Hilbert spaces.

Recently, Kondo and Takahashi [19] intro-
duced a class of mappings called generic
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2-generalized hybrid mappings that is more gen-
eral than the class of 2-generalized hybrid
mappings. If there exist 2, 8, 7, ER (7,7 =0, 1,
2) such that

agollz — yII? + aorllz — Ty[> + agallz — T[> (6)
ta [Tz —y||* + an ||[Tx — Ty|* + oo | Tz — T2yH2
+azo [[T% — y||* + an || 7% = Ty[* + an | 7% - 7%
+Bo ||z — Tl + By || T — T2|| + B, || T? — 2|
+v0lly = Tyl + 71 | Ty — T2) + 72 | T2 — o] <0

forallx,y € C, then T': C» Cis called an (2,
Bi vis i, j = 0, 1, 2)-generic 2-generalized hybrid
mapping; see also [13, 20]. They proved a fixed
point theorem and convergence theorems to
fixed points in real Hilbert spaces. In a very re-
cent article by Kondo [15], a fixed point
theorem is proved under more general condi-
tions on the parameters ;;, £;, 7; & R than in
the previous article [19]. Other than 2-general-
ized hybrid mappings, the class of generic
2-generalized hybrid mappings contains nor-
mally generalized hybrid mappings [25],
normally 2-generalized hybrid mappings [18],
further generalized hybrid mappings [7], and
further 2-generalized hybrid mappings [1] as
special cases. For recent contributions to the
fixed point theory, see also Kawasaki [8, 9], and
Shukla [22].

In this elementary review article, we intro-
duce simple examples of (z, i, yis 5, j = 0, 1,
2)-generic 2-generalized hybrid mappings and
demonstrate proofs of fixed point theorems for
undergraduate students or researchers working
on various fields. Special focus is placed on cas-
es such as

MTe =Tyl + (1= N [|T% - T?|* < o - y)*,  (7)
1 HTT — TZy”2 +(1—p) HTZ,T - T2yH2 < HT — T2y||2 , (8)
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forallx, y € C, where A, x € (0, 1], in addition
to the case of nonexpansive mappings (1).
These types of mappings are generic 2-general-
ized hybrid within the class that is targeted in
this article and the author's previous one [15].
For example, substituting 200 = -1, 211 = 1,
and O for all the other parameters into (6)
yields the condition of nonexpansive mappings
(1). Furthermore, letting 200 = —1, 11 = 2, 222
=1 -2, and O for all the other parameters, we
obtain the condition (7). In Section 2, exam-
ples of mappings are provided. Although one
of them is not continuous, they are within the
class that satisfies (1), (7) or (8). In Section 3,
proofs of fixed point theorems are demonstrat-

ed for types (1), (7) and a slightly general type
of (8).

Il |Fixed point theorem
and examples

In this section, we reproduce the fixed
point theorem for generic 2-generalized hybrid
mappings by Kondo [15] and present examples
of mappings within the class of mappings that
are addressed in this article. For an (2, 8 yis
i,j =0, 1, 2)-generic 2-generalized hybrid map-

ping (6), we use the following notations:

Qjo = Qo + 41 + iip - and  Qee = 5 Qij, (9)
4,j=0,1,2

where 7 = 1, 2. The theorem of Kondo [15] is as
follows:

Theorem 2 Let C be a nonempty, closed, and
convex subset of H and let T : C > C be an (i
B v 5 j = 0, 1, 2)-generic 2-generalized hybrid
mapping with the conditions

006

(k..207 a1.+330>01 5120-, 0—’2-+332207 ( )
10

Yot7 20, 7220

Suppose there exists an element z € C such that

the sequence {17z} in C is bounded. Then, T has

at least one fixed point.

Obviously, if C is a bounded subset of H,
the condition in Theorem 2, i.e., there exists an
element z € C such that the sequence {77z} is
bounded, is sufficiently guaranteed. We con-
sider an (aj, Bir yis i, j = 0, 1, 2)-generic
2-generalized hybrid mapping 7" that is charac-
terized by the conditions (6) and (10).

(i) Substitute 2o = =1 and 211 = 1 with all
other parameters set to be 0 into (6). The pa-
rameter constellation satisfies the condition
(10). Then, the mapping 7' is nonexpansive.

(ii) Setting an=-l,a11=Xan=1-2
and all the other parameters as 0 in (6), we
have

MTw =Tyl + (1 = N [|T% = T2y |* < o — y)* (10)

forallx, y € C, where2 € (0, 1].
(iii) Setting 2oz = -1, 212 =, a0 =1 — p,
and all the other parameters as 0 yields

Tz = T2y* 4+ (1= ) | T2 = T2 < [|lo — T2
(12)
forall x,y € C, where x € (0, 1].
(iii) Letapz = -l a2 =p',aa=1-p’,
Bo = —g¢’, and all the other parameters be 0 in
(6). Then,
o T = T4 (L= ) |72 = T2
< o = T2y||*+epd o — Tz |)? (13)
forallx, y € C, where ' € (0, 1] and ¢ € [0,
1). The case (13) with £ = 0 coincides with (12).
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Therefore, a mapping with the condition (13) is
more general than the case of (12).

(iv) Letting 211 = 2, 201 = 1 — 2, 210 = - §,
200 = — (1 - f3), and all the other parameters
be 0, we obtain a generalized hybrid mapping
(4), where 2, B3 ER.

(v) Similarly, a 2-generalized hybrid map-
ping (s) is within the class of generic
2-generalized hybrid mappings (6) that satisfies
the parameter condition (10).

We present some examples that satisfy (i)-
(iii).

Example 1. Let H = C = R?. Using a ma-
trix, define a mapping 7': R%5 R? as below:

r()-(0)C) e () e

This matrix represents a rotation and a
(linear) nonexpansive transformation in R?
) . . 0\ .
with a unique fixed point <0> in R2. [

Next, we deal with a mapping that satisfies
the condition (11). Note that mappings of this
type are continuous. Indeed, from (11),

AT =Tyl < lo — gl forall o, € C,
where 2& (0, 1], which shows that 7"is contin-
uous. Letting2 = 1/3 in (11) results in

1 2

e =Ty + [P =1 < o —wl (14)
for all v, y € C. A mapping in Example 2 satis-
fies the condition (14).

Example 2. Consider the case H = C = R.
Define a mapping 7°: R > R as follows:

0 ifz>0,
e={ U ez (15
for all x € R. As seen in the following figure, 7"

is not a “nonexpansive-type” mapping although
it is continuous.
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It can be verified that the function 7 satisfies
the condition (14) as follows: Choose x, y € R
arbitrarily. (i) Ifx,y 20, then Tx =Ty = T*x =
T'*y = 0. Thus, the condition (14) is satisfied.
(ii) If x, y < 0, then it holds that Tx=-+3x,
Ty=—3y, and 7% = 7%y = 0. In this case, it is
true that

LHS of (14) — RHS
1 2 2
= g 17w =Ty|* + 3 | 7% = T|" — |l — y)?

= % (—\/§m+\/§y>2 — (.7:—3/)2 =0.

This indicates that the condition (14) is satis-
fied. (iii) Ify < 0 < x, then 7y = V3y and Tx =
T’ = sz = (. Consequently, it follows that

LHS of (14) — RHS

1 2
= 517 = Tyl? + S ||7% — 7% ~ Jlz — I

1 2
=3 ITyl* = [l —y]?

=y’ — (z—y)°

= 7‘L(‘,L - 2y) <0,
which demonstrates that the condition (14) is
satisfied. We have verified that the mapping de-

fined by (15) satisfies the condition (14) as
claimed. [ ]

Now, an example of a mapping that satis-
fies (12) is presented. Setting # = 1/3 in (12),

we have

1 2 2 2 2
3T =+ St -7 < e - 7

for all z,y € C. (16)
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Although the mapping in Example 2 satisfies
(16), we consider another example that is not
continuous and satisfies the condition (16).

Example 3. Let H =R and C = [0, 00). De-
fine a mapping 7': C» R as follows:

1
0if0<z<—oraz=1,
Tx—{ V3 (17)

1 if%<randz7€1,

for all x & C. We demonstrate that the map-
ping 7 defined by (17) satisfies the condition
(16). For x,y € C = [0, o), it holds that 7% =
T 2y = 0. Therefore, our aim is to show that
(Tx)? < 3x% Consider two cases according to x.
() If0 <x < 1/y3orx =1, then Tx = 0. In
this case, the desired result follows. (i) If 1/43
< xand x # 1, then Tx = 1. Therefore, it fol-
lows that

1
(Tw)2731‘2<173<§:0‘

Therefore, the mapping defined by (17) satisfies
(16) as claimed. []

Given that mappings with the condition
(13) are more general than those with (12), the
example (17) also satisfies the condition (13).
For examples of (iv) generalized hybrid map-
pings and (v) 2-generalized hybrid mappings,
see Kondo [14, 17] and articles cited therein.

III |Proofs for
some special cases

In this section, we present proofs of fixed
point theorems for cases corresponding to (i),
(ii), and (iii) ", which simplify Theorem 2. Be-
fore proving the theorems, as prior knowledge,
recall the following:

008

(a) For a bounded sequence {x,} in H,
there exist a subsequence {x,} of {x,} and v €
H such that Xn, = 0, where X, =V indicates
weak convergence, that is, <Xnp 2> > <0, 2> for
allz € H.

(b) A closed and convex subset C of H is
weakly closed; in other words, for a sequence
{x,}in C, if x,, ~ v © H, thenv € C.

(c) It hold that [z + yl* = l/* +2 (=, y)+[ly|*
for any elements x, y of H from the relation be-
tween the inner product and the norm.

The author referred to the textbook of
Takahashi [23] for the following proof of The-

orem 3.

Theorem 3 Let C be a nonempty, closed, and
convex subset of H. Let T be a nonexpansive
mapping from C into itself- Suppose there exists
an element z © C such that {17z} is a bounded
sequence in C. Then, T has at least one fixed
point.

Proof. Define

Ab = ! X_: Tk,

" ’
k=0

As T: C > C and C is convex, {49} is a se-
quence in C. As {77z} is bounded, so is {4 N,
Based on (a), there exists a subsequence {49}
of{Ag} such that 4, ~ v for some v € H. As
C is a closed and convex subset of H, based on
(b), it is weakly closed. As {A%} C Cand AEZ.
—~v,wehave v € C. As T: C~> C, an element
Tv ( € C) exists. Our goal is to prove that 7Tv =
v, in other words, v is a fixed point of 7.
As T 'is nonexpansive, it holds that

2 2
HTkHZ — TvH < HTkZ — vH

forany k=0, 1,2,... . Using (c), we obtaiin
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2 2

”T’le - Tv” = HT’“Z —Tv+Tv - 1/”

k 2 k
:HT szvH +2<T z—Twv, Tv7v>

+ | Tv —o|?.
More concretely, it holds true that
|72~ To|?
<l|lz=To|> +2(z = Tv, Tv—) + ||Tv —v|?,

72 = 7o
< || Tz = Tw|* + 2(Tz — Tv, Tv —v) + |Tv —v]?,
||T3z 7TvH2

<||7%z - TUH2 +2(T% — Tw, Tv—v) + |Tv— |,

HT”fl,z — TUH2

< HT"’QZ —To|? +2 (T" 22— Tv, Tv—v) + |Tv - ||,

Tz — Tw|?
<|7mte - TvH2 +2(T" % — T, Tv—v) +||Tv— |,

where » € N. Summing these inequalities re-

sults in
[Tz — Tl
n—1
<|lz=Tv|?+2 <Z Tz — nTv, Tv — U> +n|Tv—v|?.
k=0

As ||T"z — T[> > 0, it follows that

n—1

0<|lz—Tv|*+2 <ZTkZ —nTv, Tv— /U> +n||Tv —v|?
k=0

Dividing by 7, we have

1
0< EHszUHQJr?(Angv, Tv—v) + | Tv —v|?.
As 7 is any natural number, it holds that
1
0< —lz— To|? +2(AS —Tw, Tv—v) + | Tv— |
i

foralli =N. As A,‘Zi > v, we obtain in the limit
as i > oo that

0<2(v—"Tv, Tv—v)+|Tv—ov|?
=2 Tv —o|* + |Tv - o|*
=~ ITv—ol?,

which implies that 7o = ». This ends the
proof.
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Theorem 1 immediately follows form The-
orem 3.

Next, we proceed with a theorem concern-
ing the condition (11). As an additional prior
knowledge, note the following:

(d) If x, - v and x, — 3, > 0, then y, —~ v,
where {x,} and {y,} are sequences in H and v €
H.

Theorem 4 Let C be a nonempty, closed, and
convex subset of H. Let T be a mapping from C
into itself such that

ATz =Tyl + (1= X) |72 - T2|* < o -yl (18)

Jor all x, y € C, where ) € (0, 1]. Suppose there
exists an element z < C such that {17z} is a
bounded sequence in C. Then, T has at least one

fixed point.

Proof. Define

n—1 n n+1

1 1 1
0 _ k 1 _ k 2 _ k
A, = ;ZT z, A, = EZT z, and A; = ;ZT z.
k=0 k=1 k=2
As C is convex, by their definitions, {4 2}, {4 ,11}
and {42} are sequences in C. As {7z} is
bounded, so is {49}. Therefore, there exists a
subsequence {49} of {49} such that 49, ~ v
for some v & H. As C is closed and convex, it
is weakly closed. From {49} C Cand 43, ~ v,
it follows that v € C. As T is a mapping from
C into itself, 7v and 7% (€ C) exist. Our aim
is to prove that 7v = v.
Next, let us show that
Aii — v and Aii — v (19)
as 7 > oo, Notice that
AS — AL —0 and A% — A2 0.

(20)
Indeed, it holds that
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|47 — A2
n—1 n+1

1 1 :
;ZT’“27;ZT"Z
k=0 k=2

1

= z4+Tez+T%2+-- - +T" 12
m

— (T2 4+ + T 2+ T2

:% |2+ Tz —Trz =T 12|

As {7z} is bounded, we obtain 49 — 425 0 as
7 5 oo, Similarly, the part 49 — 4} » 0 also fol-
lows. As A9, ~ v, from (20) and (d), we have
A} ~vand A2 — v as claimed.

From the condition (18), it holds that
2

2 2
A HT’““Z - TvH +(1-A) HT’“Hz - T2v” < HTkZ - UH

forall£=0, 1, 2.... From this,

A (HTkHZ -

2
+2 <Tk+1z —v, v— TU> + Jlv— T’UH2>
2
+(1-X) (HT’H'QZ - UH +2 <Tk+2z —v, v — T2v>

o T2vH2) < [ o

Consequently, we have

A <HT’C+IZ - ’UH2 - HT"Z - 21”2)

+(1-X) (HT’“"’QZ - vH2 - HTkZ - UHZ>

A [lo =Tl + (1= X) [|o — T2

+2A <Tk+lz —v, v— TU>

+2(1=2) <Tk+2z —v, v — T2v> <0.
Summing these expressions with respect to k =
0,1, :+, 7z -1 and dividing by 7, we obtain

A

(i = ol = 2 = ol?)

+¥ (”T"Hz - vH2 + |7z —o)?

1Tz = vl = |12 = v]*)
A o = Tol? + (1= ) [|lo = T2
+2X (AL —v, v —Tv) +2(1 = A) (A2 —v, v—T%) <0,

where » © N. As { 7"z} is bounded,

o10

1 |77z —v||> - 0 and 1 HT"HZ - v||2 — 0.
n n

Replacing 7 by 7; and taking the limit as 7 > oo,
we have from (19) that

Mo —=To|?+ (1= ) Hv - T21/||2 <0.

Subtracting (1 = 2) [l - T%0||*(=0) from the
left-hand side results in

Mo —To|* <0.

Dividing by 2(> 0), we obtain ||» - o> <0,
which implies that » = Tv. This completes the
proof. H

In a similar way, the following theorem
that is a generalized version of Theorem 4 can

be established.

Theorem s Let C be a nonempty, closed, and
convex subset of H. Let L © N and let 1y, +*+,
AL € [0, 1] that satisfies Ele M=1.LetThea
mapping from C into itself such that

L 2
ST = 7y|| < e - y)?
=1

Jor all x, y € C. Suppose there exists an element
2 € Csuch that {T"z} is a bounded sequence in
C.If 21 >0, then T has at least one fixed point.

Theorem s includes Theorem 4 as the case
of L = 2. For a proof of the case L = 3, see
Kondo [15]. Theorem s includes Theorem 1 as a
special case of 11 = 1 (or L = 1), while Theorem
4 also includes Theorem 1 as a case of 1 =1.

In a recent work Kondo [16], the common
fixed point problem was studied for two non-

linear mappings S and 7" that jointly satisfy

MSz = Syl* + (1= V) [Tz = Ty|* < |z = ylI*  (21)
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by supposing ST = 7. Setting S = T'and T'=
77 in (21), we obtain the condition (18).

The following is a theorem for mappings
characterized by the condition (13). The theo-
rem includes the case for (12) as a special case
ofe=0.

Theorem 6 Let C be a nonempty, closed, and

convex subset of H. Let & (0, 1] and ¢ € [0, 1).

Let T be a mapping from C into itself such that
w7z = T2)* + (1 = ) 7% - T2

(22)

<z = T?y|* + epfjo - Ta?

for all x, y © C. Suppose there exists an element
z € Csuch that {T"z} is a bounded sequence in
C. Then, T has at least one fixed point.

Proof. Define

As C is convex, {42} is a sequence in C. As
{T7"z} is bounded, so is {42} . Hence, there ex-
ists a subsequence {42} of {42} such that 432,
— v for some v € H. As C'is closed and convex,
it is weakly closed. As {42} C Cand 43, —~ v,
we have v € C. Hence, Tv and T% ( € C) ex-
ist. Our aim is to show that 7v = v.
From (22), it holds that

2 2

I HT’L‘ - T’”zzH +(1—p) HTZﬂ - T’”zzH
k+2 2 2
< H’U—T + zH +epllv—Tv|

forall#=0, 1,2, -+ . This yields

2
7 (HT’“”Z — UH +2 <Tk+22 —v, v— Tv> + |lv— T'UH2>
k42 2 k42 2
+(1—p) (HT’+ zva +2<T'Jr z—v,v=T ’U>

+o =720

2
< HT’“+22 - UH +eplv—To|?.
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It follows that

2 <Tk+22 —v, v — T?J> +2(1—p) <Tk+2z —v, v— T27)>

o —Tol? + (1 — p) ||1 - T2’b‘H2
<eplv—Tol?.

Let » € N. Summing these expressions with
respect to £ =0, 1,... ,z — 1 and dividing by 7,

we obtain

2 (A2 —v, v—Tv) +2(1—p) (A} —v, v—T%)
+ullv = Tol> + (1 — p) v - T2vH2
<eplv—Tol?.

Given that 4 ,%l. — v, replacing 7 by 7;, we have
in the limit as 7 » oo that
plo =Toll? + (1 = p) o= T2||* < epflo - o]
Therefore,
p(=e) o =To* + (1 - p) o - T%]|* <0.
Subtracting (1 - &) [lo - T20||*(>0) yields
p(l=e)lv—To|* <0.
Asp € (0, 1]and e € [0, 1), dividing by ¢ (1 -

¢) (> 0), we obtain [lv — 79> < 0. This means
v = T, which completes the proof. [ll

As stated in the Introduction, fixed point
theorems for generalized hybrid mappings (4)
and 2-generalized hybrid mappings (s) are pro-
vided in Kocourek et al. [11] and Maruyama et
al. [21], respectively. The author hopes that
readers enjoy discovering various types of fixed
point theorems and examples of mappings that
have (or do not have) fixed points by referring
to the conditions (6) and (10).
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Review of Fixed Point Theorems for a Certain Class
of Nonlinear Mappings in Hilbert Spaces

Atsumasa Kondo

In this elementary review article, we discuss
a previous study [A. Kondo, Fixed Point Theo-
rem for Generic 2-Generalized Hybrid Map-
pings in Hilbert Spaces, Topol. Methods
Nonlinear Anal. 59(2B) (2022), 833-849],
which deals with a fixed point theorem for a
general type of nonlinear mappings called ge-
neric 2-generalized hybrid mappings. While
presenting some examples of this class of map-
pings, we demonstrate proofs of fixed point
theorems for some simple cases as illustrations.
One example presented in this article is not
continuous. Some results extend a well-known

fixed point theorem for a nonexpansive map-

ping.
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