CONVERGENCE THEOREMS USING ISHIKAWA
ITERATION FOR FINDING COMMON FIXED POINTS OF
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ATSUMASA KONDO

ABSTRACT. This paper presents weak and strong convergence theorems
for finding common fixed points of two nonlinear mappings, where one
mapping is demiclosed, and the other is 2-demiclosed. For this pur-
pose, we use Ishikawa type iteration and obtain weak convergence theo-
rems. Nakajo and Takahashi’s hybrid method and Takahashi, Takeuchi,
and Kubota’s shrinking projection method are also employed alongside
Ishikawa iteration to derive strong convergence. Our proofs do not re-
quire the mappings to be commutative or continuous, and the results
obtained in this paper extend many theorems in the literature.

1. INTRODUCTION

In this paper, we let H denote a real Hilbert space equipped with an
inner product (-, -) and the associated norm ||-|| defined by ||z| = \/(z, ).
Let N and R be the sets of natural and real numbers, respectively. Many
researchers have studied approximation methods for finding fixed points of
various types of nonlinear mappings. Let C be a nonempty subset of H. A
mapping S : C' — H is called

(i) firmly nonezpansive if | Sz — Sy||*> < (z —y, Sz — Sy) forallz,y € C,

(i1) nonezpansive if ||[Sx — Sy|| < ||z — y|| for all z,y € C,

(iii) nonspreading [21, 22] if

2|8z — Sy|® < ||z — Sy|* + [|Sz — y||* for all z,y € C,
(iv) hybrid [43] if
315z = Syl” < llz — yll* + llz = Sy|” + Sz — y|I” for all 2,y € C,
(v) generalized hybrid [19] if there exist «, 8 € R such that
a||Sz = Sy|* + (1 - a) & — Sy|* < B 1Sz —y|* + (1 = B) = — y|I”

for all z,y € C,
(vi) normally generalized hybrid [48] if there exist a, 3,7, € R such that
a+B+~v+6>0and

2 2 2 2
oSz — Syl|” + Bllz — SylI” +v[|Sz —ylI" + 6z —y[|" <0
Key words and phrases. Ishikawa iteration, demiclosed mapping, 2-demiclosed map-

ping, common fixed point, hybrid method, shrinking projection method.
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for all z,y € C, where o+ 3 > 0, or a« + 7y > 0.

A firmly nonexpansive mapping is nonexpansive, nonspreading, and hy-
brid; for a proof, see Takahashi and Yao [49]. The class of generalized
hybrid mappings includes all types of mappings (i)—(iv). Indeed, a gener-
alized hybrid mapping with & = 1 and 8 = 0 is a nonexpansive mapping.
If « =2 and # = 1, then a generalized hybrid mapping is nonspreading.
Nonspreading mappings arise out of necessity from optimization problems.
A generalized hybrid mapping with @« = 3/2 and 8 = 1/2 is hybrid. A
normally generalized hybrid mapping (vi) with a + 8 =1and v+ 6 = —1
is generalized hybrid, and hence, the class of normally generalized hybrid
mappings contains all types of mappings (i)—(v) as special cases.

A mapping T : C — C is called

(vii) 2-generalized hybrid [34] if there exist ay, g, 81, 3y € R such that

2
a HT233 —Ty||" + a2 | Tz — Ty|> + (1 — o1 — az) ||z — Tyl (1.1)
2 2 2
< By ||T —y||” + B |1 Tz —y|I* + (1 = By — Ba) llz — 9

for all z,y € C,
(viil) normally 2-generalized hybrid [26] if there exist ao, By, a1, 81, @2, By €
R such that 212:0 (v +6;) >0,a2+0a1 4+ >0, and

s ||T% — Ty||” + o1 | Tz — Ty||? + ao || — Ty|)? (1.2)
+ By | T% —y|* + By [Tz — gl + Bo e — yl* < 0

for all x,y € C. The class of normally 2-generalized hybrid mappings con-
tains all types of mappings (i)—(vii) introduced here. Indeed, if av+aq+ap =
1 and By + B; + By = —1, then a normally 2-generalized hybrid mapping
is 2-generalized hybrid. Furthermore, if ap = 85 = 0, then it is normally
generalized hybrid. It is known that mappings (i)—(viii) with fixed points
are quasi-nonexpansive. The categories (iii)—(viii) contain mappings that
are not continuous; see [13, 15, 23, 24, 25] and Section 3 of this paper. Con-
vergence results concerning these types of mappings have been studied by
many researchers; for recent results, see [1, 2, 3, 4, 8, 9, 27, 36, 37, 38].
Denote by F'(S) a set that collects all fixed points of a mapping S, that is,

F(S)={ze€C:5z=xz}.

Let C be a nonempty, closed, and convex subset of H. According to Taka-
hashi et al. [48], a mapping S : C — H of type (i)—(vi) is demiclosed, that
is,

Stp —2n, — 0 and z, — v=>v € F(S5),

where {z,} is a sequence in C. For generalized hybrid mappings, see Ko-
courek et al. [19]. Kondo [23] called a self-mapping T': C — C' 2-demiclosed
if

Ty — zn — 0, T?x, — zn — 0, and zn, —v=v€F(T).
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According to Kondo and Takahashi [26], a mapping T : C — C of type
(vii)—(viil) is 2-demiclosed; see also [34]. Because demiclosed mappings are
2-demiclosed, all types of mappings (i)—(viii) are 2-demiclosed.

Let S : C — C be a normally generalized hybrid mapping and let T : C' —
C be a normally 2-generalized hybrid mapping. Following Mann’s work [32]
in 1954, Kondo and Takahashi [28] used the following iteration scheme:

Tnil = anZn + bpStn + cnTn + dnT?z, for all n € N, (1.3)

where z1 € C is given and ay, by, ¢n,dy, € [0, 1] are coefficients of a convex
combination. They proved a weak convergence theorem to common fixed
points of S and T'. Very recently, Kondo [23] proved a strong convergence
theorem for finding a common fixed point of a demiclosed mapping S and
a 2-demiclosed mapping 7' using the Nakajo and Takahashi type hybrid
method [35]:

x1 =z € C given, (1.4)
Yn = nTp + bnSxp + 1Ty + dnTan e C,
Cn={2€C:|lyn — 2| < |lzn — 2|l},
Qn={2€C:(x—xpn, zn—2) >0}, and
Tnt1 = Pcanniﬂ
for all n € N. He also used Takahashi, Takeuchi, and Kubota’s type shrink-
ing projection method [45]. The following recent contributions on the hybrid
method and the shrinking projection method deserve mention: [11, 24, 31,
47]. To read further about approximation methods for finding common fixed
points of nonlinear mappings, see [5, 12, 14, 18, 20, 28, 29, 30, 39, 40, 44].
On the other hand, in 1974, Ishikawa [16] introduced the following itera-
tion: given z1 € C,
Zn = AnZn + (1 — A\p) Tz, and (1.5)
Tnil = GnZn ~+ (1 — @n) T2y
for all n € N, where a,,, \,, € [0, 1] are supposed to satisfy certain conditions.
The iteration (1.5) coincides with Mann’s iteration if A,, = 1. Using Ishikawa

iteration, Alizadeh and Moradlou [1, 2] demonstrated the following weak
convergence theorem for a 2-generalized hybrid mapping:

Theorem 1.1 ([1, 2]). Let C be a nonempty, closed, and convez subset of
H. Let T : C — C be a 2-generalized hybrid mapping such that F (T) # ()
and

HTQ.’L' —Tz|| < | Tz — || for allz € C. (1.6)

Let Pp(ry be the metric projection from H onto F (T). Let a,b € R such
that 0 < a < b <1 and let {an} be a sequence of real numbers in the interval
[a,b]. Let {\,} be a sequence in the interval [0,1] such that

lim An (1= Ay) > 0.

n—oo
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Define a sequence {x,} in C as follows:
x1 € C: given,
Zn = MZn+ (1 — Ap) T2y, and
3l = GuBn + (1 — @) T,

for alln € N. Then, the sequence {x,} converges weakly to an element T of
F(T), where T = lim;,, Pp(7)Tn.

When the condition (1.6) holds, the mapping 7' becomes demiclosed.
Weak and strong convergence theorems using Ishikawa iteration have been
studied by many researchers; for examples see a series of papers [6, 25, 33,
50, 51, 52] and Chapter 5 in Berinde [7].

In this paper, we present weak and strong convergence theorems for find-
ing common fixed points of two nonlinear quasi-nonexpansive mappings.
One of the mappings must be demiclosed, and the other 2-demiclosed. Af-
ter introducing the required preliminaries in Section 2, we present examples
of demiclosed and 2-demiclosed mappings in Section 3. In Section 4, we
combine the iterations introduced by Kondo and Takahashi (1.3) and the
Ishikawa type iteration (1.5) to prove weak convergence theorems that gen-
eralize the results in the author’s previous paper [23]. A variant of Theorem
1.1 is also obtained (Corollary 4.1). In Section 5, Nakajo and Takahashi’s
method is developed, and, in Section 6, Takahashi, Takeuchi, and Kubota
type results are derived. Our methods do not depend on the assumption
that the mappings are commutative or continuous. Results obtained in this
paper extend many theorems in the literature.

2. PRELIMINARIES

Prerequisite information required for reading this paper is briefly summa-
rized in this section. A more systematic explanation is provided by Taka-
hashi in [41, 42]. For a sequence {z,} in a real Hilbert space H, we denote
by z, — x and x,, — x strong and weak convergence to x, respectively,
where x € H. It is known that x,, — z is characterized by the following
condition: for any subsequence {z,,} of {z,}, there exists a subsequence
{mnj} of {xn,} such that x,; — z. Let C be a nonempty, closed, and con-
vex subset of H. For any x € H, there exists a unique point p € C' such that
||z — p|| = infyec ||z — w||. This mapping is called a metric projection from
H onto C and is denoted by Po. A metric projection is firmly nonexpansive.
In general, a firmly nonexpansive mapping is nonexpansive, nonspreading,
and hybrid; see Takahashi and Yao [49]. When working with the metric
projection Pc from H onto C, the following inequalities are useful:

(x — Pox, Pox —w) >0 and (2.1)
|z — Pox|)? + [|Pox — w||* < ||z — wl|? (2.2)
forallz € H and w € C.
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The following lemma will be employed to prove the main theorems in this
paper.

Lemma 2.1 ([46]). Let F' be a nonempty, closed, and convex subset of H,
let Pp be the metric projection from H onto F, and let {x,} be a sequence
in H. Suppose that

[2n 11 = gll < [l2n — 4 (2:3)
for all g € F and n € N. Then, {Prxy,} is convergent in F.
The next lemma was proved by Maruyama et al. [34] to deal with 2-

generalized hybrid mappings; see also Kondo and Takahashi [28] and Zegeye
and Shahzad [53].

Lemma 2.2 ([34]). Let z,y,z,w,v € H and let a,b,c,d,e € R. Then, the
following hold:
(1) Ifa+b+c=1, then
|lax + by + Cz||2
= a|zl” + byl + cllzl* — ab |z — y|* = bely — 2|* — callz — z|*.

(2) Ifa+b+c+d=1, then

laz + by + cz + dw||®
2 2 2 2
= allz]”+bllylI” +cllz]” + d vl
—ab|lz — y||* - acle — 2||” - ad |z — w||*

—be |ly — 2|” — bd |y — w|* — cd |z — w||*.
(3) Ifa+b+c+d+e=1, then

llaz + by + cz + dw + ev|)?

= allz)® +blyl® + cllz)* + d|lw]® + e lo]”
—ab|lz — y||”* - acle — 2||* - ad ||z — w||* - ac||z — |
—belly = 2|” = bd |y — w||* — be |y — |

—cd ||z — w||* — ce ||z — v||* — de |Jw — v|*.

A mapping T : C — H with F (T) # 0 is called quasi-nonezpansive if
|Tx —q| < ||z —q|| for all z € C and q¢ € F(T). According to Itoh and
Takahashi [17], a set of all fixed points of a quasi-nonexpansive mapping
is closed and convex. Kondo and Takahashi [26] proved that a normally
2-generalized hybrid mapping that has a fixed point is quasi-nonexpansive.
For completeness, we reproduce the proof.

Lemma 2.3 ([26]). Let T : C — C be a normally 2-generalized hybrid
mapping such that F (T) # 0, where C is a nonempty subset of H. Then,
T 1is quasi-nonexpansive.
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Proof. Let x € C and g € F (T'). We show that ||Tz — q|| < ||z — ¢||. AsT'is
normally 2-generalized hybrid, there exist real numbers «ag, a1, a2, By, 51, B
such that 37 (aq + ;) > 0, ag + a1 + ag > 0, and
2
a9 HTQq — T:UH +aq [|[Tq — Tm||2 +oao|lg— Ta:||2
2
+B85 | T%q — ||” + 81 ITg — zII* + Bo lg — zl|” < 0.
As g =Tq="T"q,
(a2 + a1+ ao) llg = Tz|* + (62 + B1 + Bo) lla — z* < 0.
From Y7 (y + 6;) > 0, it follows that

(a2 + a1 +ao) lg — Tz|> < — (Ba + B + Bo) g — 2|
< (aa+ a1+ ) |lg — ZL‘H2

Dividing by as + a1 + ag (> 0), we obtain || — Tz|> < |l¢ — z|?, which
completes the proof. O

This lemma shows that all the types of mappings (i)—(viii) which were
described in the introduction are quasi-nonexpansive if they have a fixed
points. A mapping S : C — H is called demiclosed if

Stp, — 2, — 0 and z, — v = v € F(S), (2.4)

where {z,} is a sequence in C. The next lemma asserts that a normally
generalized hybrid mapping is demiclosed. A similar result related to gen-
eralized hybrid mappings is demonstrated by Kocourek et al. [19].

Lemma 2.4 ([48]). Let S : C — C be a normally generalized hybrid map-
ping, where C' is a nonempty, closed, and convexr subset of H. Then, S is
demiclosed.

Kondo [23] calls a mapping T": C — C 2-demiclosed if it satisfies
Txy — Ty — 0, T?z,— x, —0, and z, ~v=0v€ F(T). (2.5)

Clearly, a demiclosed mapping is 2-demiclosed. Although the following
lemma was proved by Kondo and Takahashi [26], we provide an alterna-
tive proof for completeness.

Lemma 2.5 ([26]). Let T : C — C be a normally 2-generalized hybrid
mapping, where C is a nonempty, closed, and convex subset of H. Then, T
is 2-demiclosed.

Proof. Let {x,} be a sequence in C that satisfies T2p, — 2, — 0, T?z,—
xn — 0, and z, — v. As {z,} is a sequence in C, z, — v, and C is weakly
closed, v is an element of C. Therefore, Tw (€ C) exists. Our goal is to
prove that Tv = v. As T is normally 2-generalized hybrid, there exist real
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numbers ap, a1, a2, B, 1, By such that 212:0 (u+B;) >0, a04+ar1+ag >0,
and

ay ”TQ:vn - Tv”2 + a1 ||[Txn — To||* + a0 ||zn — Tv|)?
+8, | T%20 — v|” + 81 I T2n — o] + Bo llzn — v]* < 0

for all n € N. It follows that

a9 (HTan — an2 +2 <T2mn — Tn, Tn — T’U> + ||zn — Tv||2>
+a1 (T = @all” +2(T2n = 2n, @0 — T0) + l|on = Toll”) + a0 |ln — T|
405 <HT2xn — wnH2 +2 <T2:vn — Tp, Tp — v> + ||zn — v||2)
+B1 (|72 = 2all” + 2 (Ttn — By @ — v} + |l2n —ol]°)

+6o llzn — 0| < 0.

This yields

a9 (HTQIETL — :vnHQ +2 <T23:n — ZTn, Tp — TU>>
+on <||T:vn — 2| + 2 (Txn, — Zn, 24 — Tv))
+ (2 + o1 4 o) ||lzn — Tl
+8, (HT233n — wnHQ +2 <T2wn — T, Tp — 'u>)
61 (ITen — 2l +2(Tan — 2, a0~ )
+(By + B1 + Bo) lzn — v < 0.

Furthermore, it is true that

a9 (”T%n — anZ +2 <T23:n — Dy, Dy, — Tv>)
+a; <||T:vn — || +2(Tzp — Tny Tn — Tv))
+ (g + a1 + ap) (||:L“n —o|* +2(zp —v, v—T0) + |jv— Tv||2)
+85 (HTan — an2 +2 <T2xn — T Ty — v>>
+6 (||T:t:n — 2o |? + 2Ty — Tpy Tn — v))
+ (B2 + By + Bo) llzn — vll* <0,
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and hence,
2 2 2
e %) HT By — an +2 <T Tn — Tn, Tp — T’U>
+aq <||T:vn — :vn||2 + 24Ty, — Ty B— Tv))
+ (a2 + a1 + ap) (2 (Tn —v, v—=Tv) + |jv — Tv||2)
+62 (HTQZ'TL - m'nHQ + 2 <T2-'L‘n — Xp, Tp — ’U>>
+81 (T = 202 +2 (T2 — 20, 20 — )
2
+ (Z (a; + m) |z —v|* < 0.
1=0

Subtracting (ZZQ:O (g + ﬂﬂ) |z — v||* (> 0) from the left-hand side, we
obtain

a9 (HTQ:L‘n — mnH2 + 2 <T29:n — Xy, Ty — T'u>>
+aq <||T:z:n — :vn||2 +2(Txp — Tn, Ty, — Tv))
+ (a2 + a1 + o) (2 (T —v, v—Tv) + |jv — Tv||2)
+05 (HTQ:vn - aan2 +2 <T2wn — B Aoy — v>>
+6; (||Ta:n —zn|? +2(Tzn — 0, Tn — v)) <0.

Because {z,,} is weakly convergent, it is bounded. Using that Tz, —x, — 0,
T?x, — x, — 0, and z,, — v, it holds in the limit as n — oo that

(o + a1 + ap) |lv — Tv||2 <0.
Dividing by a2 + a1 + ap (> 0), we obtain
lv—Tw||* <0,
which means that v = Tw. Hence the proof is completed. O

In the theorems presented in this paper, we require the nonlinear map-
pings to have common fixed points. A set of sufficient conditions that guar-
antee the existence of common fixed points of normally 2-generalized hybrid
mappings is given by the next theorem.

Theorem 2.1 ([10]). Let S,T : C — C be commutative normally 2-generalized
hybrid mappings, where C is a nonempty, closed, and convex subset of H.
Suppose that there exists an element x € C such that {S*T'x : k,1 € NU{0}}
is bounded. Then, F (S)N F (T) is nonempty.
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3. EXAMPLES OF MAPPINGS

In this section, we provide examples of demiclosed and 2-demiclosed map-
pings that are not continuous. The examples are slightly modified versions
of those given by Berinde [7], Igarashi et al. [15], Hojo et al. [13], and Kondo
[23, 24, 25]. The first two examples are nonspreading. Remember that a
mapping S : C — H is called nonspreading if

2||Sz - Sy|I* < |l& — Sy|I” + |15z — | 3.1)

for all x,y € C. Because nonspreading mappings are a special case of nor-
mally generalized hybrid mappings, the mappings are demiclosed by Lemma
2.4,

Example 3.1. Let H =C =R. For a > 0, define S : R — R as follows;

0 ifz<a,
Sz = % ifz>a

such that S is a nonspreading mapping on R. Indeed, if z,y < a or z,y > a,
then the LHS of (3.1) is 0, and therefore, the inequality holds. Assume
without loss of generality that z < @ < y. Then, Sz = 0 and Sy = a/V/2.
Consequently, the LHS = a®. On the other hand,

RHS = |z — Sy|* + |y|* > v* > d°.

This shows that the condition (3.1) is fulfilled. Therefore, S is nonspreading,
and hence demiclosed. [

Example 3.2. Let H be a Hilbert space, let C' = H, and let Py be the
metric projection from H onto U, where U = {z € H : ||z|| < 1} is the unit
sphere in H. Define S : H — H as follows:

S = Pyx if\/§< ||.’L'||7
=1 0 if el <2

Now let us show that S is nonspreading: if ||| ,||y|| < v/2, then Sz = Sy =
0, and the condition (3.1) follows. If ||z|,|jy]| > V2, then the condition
(3.1) is

2||Pyz — Puyl® < ||z — Poyl® + | Pz — y|*.

This inequality is true, because the metric projection is firmly nonexpansive,
and thus, it is nonspreading; see Takahashi and Yao [49]. Finally, if we
assume that ||z|| < v/2 < ||y||, then Sz = 0 and Sy = Pyy = y/ ||y||. In this
case, the LHS of (3.1) is 2||Sz — Sy||*> = 2. The RHS is

RHS = ||z — SylI* + Ilyll* = Iyl > 2.

This means that the condition (3.1) is satisfied for all z,y € C, and therefore,
S is a demiclosed mapping. [J
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Next, we present examples of normally 2-generalized hybrid mappings
that are 2-demiclosed. Letting as = a, By = —0 with 0 < § < a < 203, and
all the other coefficients be 0 in (1.2), we have

a||T% — Ty||” < 8||T% — o). (3.2)
Example 3.3. Let H = C =R, and define T : R — R as follows:

[ 0 ifz< /o,
Tm—{ VB if x> y/a.

Notice that T" does not satisfy condition (3.1) because o < 2. However,
the mapping T satisfies (3.2). Indeed, it holds that T?z = 0 for all z € R
because of the hypothesis 8 < a. Thus,

(32) < a(Ty)* < By?

< ITy|<\/7!y| (3.3)

If y < y/a, then |Ty| = 0. Consequently, (3.3) holds. If y > y/a, then the
LHS of (3.3) is |T'y| = v/ whereas the RHS is

RHS:\/g\yb\/gx/&:\/B-

Thus, (3.3) holds. Because T' is normally 2-generalized hybrid, it is 2-
demiclosed. [

Example 3.4. Let H be a Hilbert space, let C = H, and let Py be the
metric projection from H onto the unit sphere U. Define T': H — H as

follows:
Pyx i \/E <=l
Tx =

0 if flefl < /%,

where 0 < § < a < 20. Then, the mapping T satisfies (3.2). Indeed, it
holds that T2z = 0 for all z € H. Thus,

(32) <= a|Tyl* < Byl

— | Tyl < \/g\lyll- (3-4)

If ||y|| < +/a/B, then ||Ty|| = 0. Consequently, (3.4) holds. If ||y|| > \/c/f,
then the LHS of (3.4) is LHS = |Ty|| = | Pry|| = 1. The RHS is

RHS = \/§||y|| > \/g\/%= 1.

Thus, (3.4) follows, and T is 2-demiclosed. O
Obviously, the mappings presented in this section are not continuous.
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4. WEAK CONVERGENCE

This section presents weak convergence theorems for finding common fixed
points of two quasi-nonexpansive mappings. One of the mappings is assumed
to be demiclosed (2.4), and the other to be 2-demiclosed (2.5). From Lemma
2.3, we know a normally generalized hybrid mapping and a normally 2-
generalized hybrid mapping are quasi-nonexpansive if they have fixed points.
Lemma 2.4 shows that a normally generalized hybrid mapping is demiclosed,
and Lemma 2.5 shows that a normally 2-generalized hybrid mapping is 2-
demiclosed. The basic elements of the following proof were established and
polished by many researchers; in particular, see [1, 2, 11, 19, 28, 29, 34, 48,
52].

Theorem 4.1. Let C' be a nonempty, closed, and conver subset of H. Let
S : C — C be a quasi-nonexpansive and demiclosed mapping and let T :
C — C be a quasi-nonexpansive and 2-demiclosed mapping. Suppose that
F(S)NF(T) is nonempty. Let Pp(synp(r) be the metric projection from H
onto F(S)NF(T). Let {\.}, {p,}, {vn}, and {&,} be sequences of real
numbers in the interval [0,1] that satisfy

A+ +n+E&,=1 foralln €N,
lim Ayp, >0, lim A\,v, >0, and lim \,§, > 0. (4.1)

n—oo n—oo n—o0

Leta € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that ap + by, +cn +dn =1 and a < by, + ¢y, + dp,
for all n € N. Define a sequence {z,,} in C as follows:

x1 € C: given,

Zn = Ann + WSty + v Tx, + §nT23:n, and
1 n—1
Tni1 = anZn + bpST2n + ey TM 2, + dn; Z T 2, (4.2)
1=0

for all n € N, where L, M € NU{0}. Then, {z,} converges weakly to an
element T of F'(S) N F (T), where T = limy,_.co Pp(s)nF(1)Zn-

Proof. First, note that because the mappings S and T are quasi-nonexpansive,
F(S)NF (T) is closed and convex. As F (S)N F (T) # () is assumed, the
metric projection Pp(synp(r) is defined. We verify that

n—1

%Zlen—q

=0

< [lzn — 4l (4.3)
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for all ¢ € F(T) and n € N. Indeed, as T is quasi-nonexpansive, it follows

that

1 n—1 1 n—1
EZTZZ"_q SE ZTZzn—nq
=0 =0
1 n—1 1 n—1
= | (T =) | <5 o=
=0 =0

1 n—1
o D lza—gll =llza —dll.
=0

This shows that (4.3) holds. Furthermore, the following is also true:

l2n = qll < llzn — 4l (4.4)
for all ¢ € F(S)NF(T) and n € N. Indeed, as S and T are quasi-
nonexpansive,

l2n — qll

= H)\nxn + 1,85 + T+ &, T mn, — qH

= [|An (@0 — @)+, (Szn — @) + V0 (T2n — @) + &, (T20 — q) ||
< An 120 — all + w0 120 — gl + va 1Tz — gll + &, | T?2n — q|
<A llzn —all + pnllzn — gl +vn llzn — all + &, [|l2n — 4|

= ||lzn —ql|-

This demonstrates that (4.4) is correct. Next, we use these two inequalities
to prove that

|Zns1 — all < |l — gl (4.5)

forall g € F(S)NF(T) and n € N. As S and T are quasi-nonexpansive, it
follows from (4.3) and (4.4) that

[€n+1 — gl (4.6)

IAIA I

n—1

1
ann + bn S 2n + cn TM 2, + dp— Zlen —q
"3

n—1
an (xn - Q) + b, (SLZn - Q) +cp (TMzn - Q) +dy <% Zlen - Q)
=0

an |0 — qll + bn ||S" 2 — g|| + e | TV 20 — g + dn

1 n—1

—~ Zlen —q
=0

an [|zn — gl + bn l|lzn — gl + cn l|zn — qll + dn [|2n — 4|

an [|zn — qll + bn |lzn — gl + cn l|lzn — gl + dn [0 — 4]

lzn — gl -
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Thus, (4.5) is verified. From (4.5), we know that {||,, — ¢||} is convergent
in R for all ¢ € F(S)NF (T). The sequence {z,} is bounded. Lemma 2.1
with (4.5) implies that { Pp(s)n F(T) Ty} is convergent in F'(S) N F (T'), and
thus, Z = limp—.co Pp(s)nr(1)Tn exists.

Our next aim is to demonstrate that

lzn —al” < llen = qll* = Anpsy Iz — Szal? (4.7)

—AnVn ||Tn — T:lcn“2 — M, Hxn — T2:vn”2

for all ¢ € F(S)N F(T) and n € N. Indeed, as S and T are quasi-
nonexpansive and ¢ € F'(S)NF (T'), we can use (2) in Lemma 2.2 to obtain

[EEr (4.8)
= || Ann + 1 Stn + vpTon + &, T 20 — qH2
= M @ — @) + n (S0 — @) + Vi (Tn — @) + &, (T220 — @) |
= Mo llzn = al® + o S0 = all” + va [ T20 — gl* + &, || 7?20 — g|”
bty 120 = S22 = Aavn |20 — Tal? = Ankp |20 — T2n |’

—pVn |80 — Tn||® — 11,6 HS:vn - TZ:L"nH2 —vné, HT:cn - TQ.Z‘nHQ

An |20 — QHQ + iy, |20 — QI|2 + vp ||Tn — q”2 +& llzn — QI|2
2
—Anlby, || Zn — SwnH2 — Ann ||Zn — Tacn||2 — &, Hxn — TanH
2 2

— i Vn ||STn — T:L'n||2 — upé,, HSacn — TZ:vn” —vié, HT:L‘n — TanH
= zn—ql’

A 2 9 2 2
~Antin [@n = Szal* = Aavn [&n — Tn® = Mk [[on — Tan|

— i Vn ||STn — T:L'n||2 — Pl HS:L'n — TQ.’L'HHQ — i€, HT:vn — T2:1an2 .

IN

2 2
Because vy, [|Szn — Tp||* +ttnén ||Szn — T22n|| +vnéy | T2n — Tz,||” >
0, we have (4.7) as claimed.
Observe that

ety |20 — Sal|? + A [Tn — T + Anky, |20 — T22|”)  (4.9)

2 2
<z = gqlI” = [[2n+1 — gl
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forallg € F(S)NF(T) and n € N. As S and T are quasi-nonexpansive,
using (4.3) and (4.7) yields

|Znt1 — qll? (4.10)
2

n—1
an (xn - q) + b, (SLZn - Q) +cn (TMZn - Q) +d, <% ZTZZn - Q>
=0

2
an ||z — g% + b ||S%20 — a||” + cn [TV 20 — q||” + dn

IN

1 n—1
R 2 Tm—a
1=0

an ||2n — al® + (bn + e + dn) l2n — g|”
an [|2n = ql* + (bn + e + dn) (len — al* — Antty |20 — Sznl®

A [2n = Tall? = At |[n — T2 ).

IN

IN

Consequently,

2
(bn +cn + dn) ()\n,un ||5L'n - anHQ + Anln ||33n - TanQ + )\nén Hfrn - T2$n“ )

< ll&n = qll* = leni1 — gll”

Using the hypothesis that a < by, + ¢, + dp, we obtain (4.9). As {||z, —¢||}
is convergent and a > 0, it follows from (4.1) and (4.9) that

Tn —Stn —0, xp—Tx,—0, and T%z,—z,—0 (4.11)

as n — oo.
Finally, to complete the proof we must demonstrate that

n—oo

Tp — T (E lim PF(S)QF(T):CTL) .

It suffices to show that for any subsequence {zy,} of {z,}, there exists a
subsequence {zn, } of {zn,} such that z,, — Z. Let {zn,} be a subsequence
of {xn}. As {zn,} is bounded, there exists a subsequence {z,,} of {z,}
such that x,;, — v for some v € H. As S is demiclosed (2.4) and T' is 2-
demiclosed (2.5), it follows from (4.11) that v € F'(S)NF (T). Hence, from
(2.1), we have

(Tn; — Pr(s)nF(T)Zn;, Prs)nFT)Tn;, —v) =0

for all j € N. As x,,; — v and Pp(s)np(1)Zn — Z, it holds in the limit as
j — oo that (v — Z, T —v) > 0. This means that v = Z, and thus, z,, — 7.
This completes the proof. O
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Remark 4.1. The construction of xn11 in (4.2) can be replaced by more
general types; for instance,

1 n—1 i n—1
Tntl = QnZp + by, e T 2, + d— Z Stzn + en— Zlen, or
"3 "3
(4.12)
1 n—1 il m—+n—1
Trpyd = OxTn -+ bnStz, + e T 2, + dpy— Z Stzn + en— Z len,
"3 R

where m € NU{0}. In (4.12), {an}, {bn}, {cn}, {dn}, and {e,} are se-
quences of real numbers in [0,1] such that an + by +cn +dn + €, = 1 and
a < bp+cp+d,+en. To verify this point, carefully review (4.6) and (4.10)
and the proof of Theorem 4.1.

As a corollary of Theorem 4.1, we obtain the following:

Corollary 4.1. Let C be a nonempty, closed, and convex subset of H. Let
T : C — C be a 2-generalized hybrid mapping such that F (T) # 0. Let
Pr(ry be the metric projection from H onto F (T). Let {\.}, {vn}, and
{&,} be sequences of real numbers in the interval [0, 1] that satisfy

A +vn+&,=1 forallneN,

im A\pvp >0, and lim A\, > 0.

n—oo n—oo

Let a,b € R such that 0 < a < b < 1 and let {an} be a sequence of real
numbers in the interval [a,b]. Define a sequence {xn} in C as follows:

x1 € C: given,
Zn = MnZn + Tz, + fnTQ:vn, and (4.13)
Tntl = anZn + (1 —an) Tz,
for alln € N. Then, {x,} converges weakly to an element T of F' (T'), where
T = limp—.c0 Pp(r)Tn-

Proof. A 2-generalized hybrid mapping is normally 2-generalized hybrid.
Therefore, from Lemmas 2.3 and 2.5, T is quasi-nonexpansive and 2-demiclosed.
Set S =1 and p,, = 0 for all n € N in Theorem 4.1, where I is the identity
mapping defined on C. Then, F (S)NF (T) = F (T), and (4.9) in the proof
of that theorem becomes

2
& (Mva ll2n = Taal + Mbn [0 = T2al*) < llzn = qll* = llznsr — gl

for some « € (0,1), where ¢ € F'(T) and n € N. This yields z,, — Tz,, — 0
and T?z, — z, — 0 in (4.11). Setting M =1 and b, = d,, =0 for all n € N
in Theorem 4.1, we obtain the desired result. O

Corollary 4.1 is a variant of Theorem 1.1. We add the term &,7%z,
in (4.13) whereas the condition (1.6) in Theorem 1.1 is dispensable in our
result. Similarly, the following result is derived from Theorem 4.1.
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Corollary 4.2 ([52]). Let C be a nonempty, closed, and convex subset of
H. Let S: C — C be a generalized hybrid mapping such that F (S) # (. Let
Pp(s) be the metric projection from H onto F (S). Let {\,} be a sequence
of real numbers in the interval [0,1] that satisfies

lim Ay (1= An) > 0.
Let a,b € R such that 0 < a < b < 1 and let {an} be a sequence of real
numbers in the interval [a,b]. Define a sequence {zn} in C as follows:

x1 € C: given,
zZn = AnZn + (1 — A\y) Szp, and
Tnt1 = anZn + (1 — an) Szn

for alln € N. Then, {x,} converges weakly to an element T of F (S), where
z = limp o0 Pr(s)Zn-

Proof. Note that a generalized hybrid mapping is normally generalized hy-
brid. Therefore, from Lemma 2.3 and 2.4, S is quasi-nonexpansive and
demiclosed. Letting v, =&, = ¢, =d, =0 and L = 1 in Theorem 4.1, we
obtain the desired result. O

Theorem 4.1 directly yields the following corollary:

Corollary 4.3 ([28]). Let C be a nonempty, closed, and convex subset of
H, let S: C — C be a normally generalized hybrid mapping, and let T :
C — C be a normally 2-generalized hybrid mapping. Suppose that F (S) N
F(T) is nonempty. Let Ppsynp(r) be the metric projection from H onto
F(S)NF(T). Let a,b € R such that 0 < a < b < 1 and let {\}, {pn},
{vn}, and {&,,} be sequences of real numbers in the interval [a,b] such that
An 4ty +n+E&, =1 for alln € N. Define a sequence {x,} in C as follows:

x1 € C: given,
Tnt+1 = AnZn + /anSfUn +vpnTx, + §nT2.’En

for alln € N. Then, the sequence {x,} converges weakly to a common fized
point T € F'(S) N F(T), where T = limp_.co Pp(s)np(1)Zn-

Proof. From Lemma 2.3 and 2.4, a normally generalized hybrid mapping
with a fixed point is quasi-nonexpansive and demiclosed. Similarly, from
Lemma 2.3 and 2.5, a normally 2-generalized hybrid mapping with a fixed
point is quasi-nonexpansive and 2-demiclosed. Letting a, = ¢, = d,, = 0,
L =0 in Theorem 4.1, we obtain the desired result. O

We can prove the following theorem concerning two demiclosed mappings
in a similar way as we proved Theorem 4.1. In the proof of Theorem 4.2, the
equality (1) in Lemma 2.2 is used. For this point, check (4.8) in the proof
of Theorem 4.1 carefully.
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Theorem 4.2. Let C' be a nonempty, closed, and convex subset of H. Let
S, T : C — C be quasi-nonexpansive and demiclosed mappings with F (S) N
F(T) # 0. Let Pp(s)np(r) be the metric projection from H onto F (S) N
F(T). Let{\n}, {ttn}, and {vyn} be sequences of real numbers in the interval
[0,1] that satisfy

An+ iy, +vn =1 foralln eN,
lim App, >0, and lim A,v, > 0.

Leta € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that an +bp +cn+dn =1 and a < by, + ¢, + dy
for all n € N. Define a sequence {x,} in C as follows:

x1 € C: given,
Zn = An@n + WSty +viTx,, and
n—1
1
Tntl = AQnTn + bnSLZn + CnTMZn + dnﬁ Z len
1=0
for all n € N, where L, M € NU{0}. Then, {z,} converges weakly to an
element T of F'(S) N F(T'), where T = limy, .00 Pp(s)np(1)Tn-

By using (3) in Lemma 2.2, we can also obtain the following theorem for
two 2-demiclosed mappings.

Theorem 4.3. Let C' be a nonempty, closed, and convex subset of H. Let
S, T : C — C be quasi-nonexpansive and 2-demiclosed mappings with F (S)N
F(T) # 0. Let Pps)np(r) be the metric projection from H onto F (S) N
F(T). Let {\n}, {p}, {vn}, {&.}, and {0,} be sequences of real numbers
in the interval [0, 1] that satisfy

Aty +vn+E&,+0,=1 forallneN,
h_m)\n/J’n >07 li_m)\nyn >07

lim \p§,, >0,  lim A\,0, > 0.

Leta € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that an, + by, +cp +dp =1 and a < by, + ¢, + dy
for all n € N. Define a sequence {z,} in C as follows:

x1 € C: given,

Zn = MZn + B, STy + UnS?zT, + & Txn, + QnTQ:rn, and

n—1

1
Tntl = GpnTn + bnSLG + CnTMZn + dn— Z len
f =0

for alln € N, where L, M € NU{0}. Then, {x,} converges weakly to an
element T of F'(S) N F (T), where T = limy,_.co Pp(s)nF(1)ZTn-
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5. STRONG CONVERGENCE BY HYBRID METHODS

In this section, we present Nakajo—Takahashi type strong convergence
theorems for finding common fixed points of two quasi-nonexpansive map-
pings. Each of which is required to be demiclosed (2.4) or 2-demiclosed
(2.5). The mappings are not necessarily commutative or continuous. The
basic elements of the proof adopted here were developed in many works,
such as [2, 11, 13, 23, 24, 35] and [47].

Theorem 5.1. Let C' be a nonempty, closed, and convex subset of H. Let
S : C — C be a quasi-nonexpansive and demiclosed mapping and let T :
C — C be a quasi-nonexpansive and 2-demiclosed mapping. Suppose that
F(S)NF(T) # 0. Let {\}, {u,}, {vn}, and {§,,} be sequences of real
numbers in the interval [0,1] that satisfy

At by +vn+E,=1 forallneN,
lim Ayp, >0, lim A\,v, >0, and lim \,§, > 0. (5.1)

n—oo n—oo n—oo

Leta € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that ap + by, +cn +dn =1 and a < by, + ¢y, + dp,
for all n € N. Define a sequence {z,,} in C as follows:

r1=x € C: given,

Zn = AnZn + W, STy +vpTx, + fnTan,
1 n—1
Yn = QnTn + b Stz + ey TM 2, + d”ﬁ Zlen, (5.2)
1=0
Cn={w e C:|yn —wl| < [lzn —wll},
Qn={welC:{(x—2zn zn—w) >0}, and

Tnt+l = PCannx

for all n € N, where L, M € NU{0}. Then, {zn} converges strongly to a
point & of F (S)NF (T), where T = Pp(s)np(1)®-

Proof. First, note that because the mappings S and T are quasi-nonexpansive,
F(S)NF (T) is closed and convex. Furthermore, because we assume that
F(S)N F(T) # 0, the metric projection Pr(s)np(r) from H onto F'(S) N
F (T) exists. As a preliminary consideration, we prove that (5.3)—(5.5) hold
when the sequences {z,}, {yn}, and {z,} are given. As S and T are quasi-
nonexpansive, the following inequality is true:

20 = qll < lln — 4l (5-3)
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for all g € F(S)NF(T) and n € N. Indeed,

[2n — gl

= H)\nxn + U, St + v Tz, + fnTQacn — qH

= H)\n (zn — @) + pp, (Szn — @) + v (Tzn, — q) + &, (TQ:cn — q)H
< M|z = qll + o 1520 — all + va [ T2n — gl + &, || T?20 — ]
< Anllzn = qll + o lzn — gll + vn 20 — qll + &5 120 — 4|l

= [lzn =gl

which shows that (5.3) holds. Furthermore, it also holds that

n—1

%Zlen—q

=0

< [lzn — 4l (5-4)

for all ¢ € F(T') and n € N. Indeed, as T is quasi-nonexpansive,

n—1 n—1
1 1
—Zlen—q < — len—nq
n n
1=0 1=0
n—1 n—1
1 1
=% [T -a)| < T |
" i=o "=
n—1
1
< = Mz —dl = llzn —all.
1=0
Using (5.3) and (5.4), we obtain
1yn = gll < llzn — ]| (5.5)
for all ¢ € F(S)N F(T) and n € N. Indeed, as S and T are quasi-
nonexpansive,
1yn — qll (5.6)

IAIA I

n—1

1
anTn + bnST 2 + cn T 2, + dn— > Tz —q
=0

n—1
an, (wn - Q) +dig (SLZn - Q) +cp (TMzn - Q) +dy, <% ZTlZn - Q)
=

an |0 — qll + bn ||S" 2 — g|| + e | TV 20 — g + dn

1 n—1

n 2 Tm—a
=0

an [|zn — gl + bn l|lzn — gl + cn l|zn — qll + dn [|2n — 4|

an |20 = gl + bn |20 — gl| + cn llzn = gl + dn [ — gl
Iz — qll -
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which demonstrates that (5.5) holds. Furthermore, it is clear from their
definition that C,, and @), are closed and convex for all n € N when x,, and
yn € C are given.

Next, we verify that the sequences {z,}, {yn}, and {z,} are properly
defined. To do so, we use mathematical induction to demonstrate that
F(S)NF(T) Cc C,,NQy, for all n € N. (i) It holds that F (S)NF (T) C Q1
because @1 = C. Let ¢ € F (S)N F (T). From (5.5), it holds that

lyr —all < llz1 —qll,

which indicates that ¢ € Cy. Thus, F (S) N F (T) C C;. (ii) Assume that
F(S)NF(T) C CxNQk, where k € N. As it is assumed that F (S)NF (T') #
0, Cx N Qg is also nonempty. As C; N Qg is closed and convex subset in H,
the metric projection Pc,ng, from H onto Cp N Qj exists. Thus, xx41 =
Pc,ng,x is defined. Consequently, zx11, yrt1 (€ C), Cry1, and Qr41(C C)
are also defined. We show that F'(S)NF (T) C Crt+1 N Qk+1- The inclusion
F(S)NF(T) C Cg4q follows from (5.5). We prove that F (S)NF(T) C
Qk+1- Choose ¢ € F(S) N F(T) arbitrarily. As xxy1 = Peyng, and g €
F(S)NF(T) C CxNQy, we have from (2.1) that (x — zx41, Tx11 —¢q) > 0.
This means that ¢ € Q1 and thus, we have F'(S)NF (T) C Cyy1 N Qi1
as claimed. We have demonstrated that F'(S) N F(T) C Cp, N @y for all
n € N, and since F (S)NF (T) # 0 is assumed, this means that C,,NQy, # 0
for all n € N. Therefore, the sequences {z,}, {2}, and {y,} are defined
successively.
From the definition of (), it holds that

zn = Pg,x
for all n € N. Consequently,
[z — znll < [l —qf (5.7)

for all ¢ € F(S)N F(T) and n € N. This is because ¢ € F (S)NF (T) C
Crn N Qn C Qp. From (5.7), {x,} is bounded. In view of (5.5), {yn} is also
bounded.

Next, notice that

[ = zn[| < |z = @nial] (5-8)

for all n € N. Indeed, as z, = Pg,z and 2,+1 = Pc,nQ,* € Qn, (5.8) holds.
Because {z,} is bounded, so is {||[z — zn||}. As {||z —zx||} is monotone
increasing and bounded, it is convergent in R.

Observe that =, — y, — 0. As 2, = Pg,z and 1 = Fc,nQ,% € @n, it
holds from (2.2) that

|z = 2nll” + l2n — 21l < |z — 20l

for all n € N. As {||lx — x|} is convergent, it follows that z, — zp,41 — 0.
From 2,41 = Pc,n@,x € Ch, it follows that |yn — znp1l| < |20 — Zngal|-
Using x,, — ny1 — 0, we have y, — 1 — 0. Thus,

lyn — znll < lyn — o1l + |20t — 20l = 0
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as claimed.
Next, we show
Stp—n —0, Tzp—z,—0, and T%z, —z, — 0. (5.9)
Let ¢ € F(S)NF (T) and n € N. We show that
lzn —gl® < llzn — gll* — Anpt |l — Sz (5.10)

—Ann ||zn — T:lcn”2 — &, Hxn — TQ.’L'nHQ .

Indeed, as S and T are quasi-nonexpansive, it follows from Lemma 2.2-(2)
that

12 — gl (5.11)
— ”)\n:vn + p1, S + v T + €, T2, — qH2
= || (@n — @) + £, (Szr — @) + v (T — @) + &, (Tan —q)
= nllzn — all + po 1820 — ql* + vn | Tan — ql* + &, | 7?0 — q||”
—Anty, || Zn — Swn||2 — Mn ||Zn — Ta:nH2 - A&, Hmn — TQ.IJnHQ

— Vi |8 — Tn||® — 11,61 | Szn — TQ.’L'n”Q — Un&y, || T2n — T2.’I)nH2

2
I

IN

A llZn = I + oo 20 — ql® + vn 20 — ql® + &, llzn — gl
2
—Anliy, ||Zn — Sacn”2 — Ann ||Zn — Tacn||2 — &, Hxn — T2an

—tnVn ||STn — Ta:n||2 — tnén HSmn — T2:1:nH2 — i, HTacn — TanH2

= |zn—ql”
—Anlby, || Zn — S:En||2 — Ann ||Zn — T:En||2 — &, H:I:n — TQ.CUnHQ
— i Vn ||STn — Tacn”2 — upé,, HS:vn — T2:1cn”2 —vné, HTa:n — T2:1an2 .

2 2
AS fi,0n ||Szn — Tan|* + ot Han - TgmnH + R, HTCUn - TanH >0,
we obtain (5.10). Using (5.4) yields

yn — ql” (5.12)

n—1 2

1
= lanxn + bnS¥2n + cnT™ 2, + d,,— Zlen —q
"3

2

1 n—1
= ||an (xn - Q) + by, (SLZn - Q) +cn (TMZn - Q) +d, (; ZTZZTL - q)
=0

g 2
2 2 1x
< anllzn— g’ +b: || — g+ [|[TM 20 — || + dn EZlen—q
=0
2 2 2 2
< anllzn —gl” +bn llzn — gll” + cn ll2n — gl|” + dnll2n — 4l
= an”i'n_QHQ+(bn+Cn+dn)”Zn_Q||2-
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From (5.10), the following holds:
v — al?
< anllzn - Q||2 + (bn + e + dn) (lzn — q”2 — Anby, ||Tn — Smn”2
—AnVn ||Tn — T:lcn“2 — M, Hacn — TQ:EHHQ)
= |lzn — ‘]H2 = (bn + cn + dn) (Anpty llzn — Smn”2 + A [lZn — T2y ||
+An&y, ||zn — TanHQ).
The result is that
(bn + cn + dn) (Anttn [|Tn — an||2 + Ann [|Tn — TanQ
+An&y, ||lzn — TQa:nHQ)
< llzn = al* = llyn — all®
(lzn = all + llyn — all) (lzn — qll = llyn —all)
< (lzn —all + llyn — all) llzn — ynll -
As a < b, + ¢, + dy, We obtain

2

2
a(Anpin ||lTn — SmnHQ + Anvn |0 — Txn”2 + Ak, Hxn - T2$n“ )
< (lzn =gl + llyn — qll) [lzn — ynll -

As a >0, {z,} and {y,} are bounded, and z,, — y, — 0, using assumptions
on the parameters \,, f,,, Vn, &, (5.1), we obtain (5.9).

Our goal is to demonstrate that z,, — Z (: Pr(s)n F(T)x); in other words,
for any subsequence {zn,} of {z,}, there exists a subsequence {zn,} of
{xn,} such that z,;, — 2. Choose a subsequence {x;,} of {x,} arbitrarily.
As {zy,} is bounded, there exists a subsequence {zy,} of {z,,} such that
T, — v for some v € H. As S is demiclosed (2.4) and T is 2-demiclosed
(2.5), we have from (5.9) that v € F'(S) N F (T). We prove that z,, — v.
Asve F(S)NF (T), it follows from (5.7) that

o, ol = 2, =2l + 2o, 2, =0} + = ol
< ||x—v||2+2<acnj —z, :r—v>+||:c—v||2.
From Tp; — U, We obtain
|zn; — UH2 < |lz —v|® +2{zn;, — z,  — V) + ||z — 0|
2|z —vP +2(w—x, z—v) =0.

This means that x,; — v as claimed. Finally, we demonstrate that

v <= lim :vnj) =T (= Pp(s)nr(1)T) -

I

As v € F(S)Nn F(T), it suffices to show that ||z —v|| < ||z —Z||. Using
(5.7) for g =2 € F (S)N F (T), we have

lz = @n || < ll= — 2|
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for all j € N. As z,,, — v, it holds that ||z —v|| < ||z —2]|. Thus, v = 7.
This means that z,, — Z. This completes the proof. [l

Remark 5.1. As in Remark 4.1, the sequence y, in (5.2) can be defined
more generally; for instance,

1 n—1 1 n—1

n—1 m+n—1

1 1
n = Andn ann TMn dn_ ln n_ Tln
Yn = AnTn + S Yn +cCp y+n;Sy+eanm Yn,

where m € NU{0}. In (5.13), {an}, {bn}, {cn}, {dn}, and {e,} are se-
quences of real numbers in [0,1] such that an + by +cn +dn + €, = 1 and
a <bp+cn+dn+en for alln € N. For this point, carefully check (5.6) and
(5.12) in the proof of Theorem 5.1.

The following corollary is derived from Theorem 5.1.

Corollary 5.1 ([23]). Let C be a nonempty, closed, and convex subset of
H. Let §: C — C be a quasi-nonexpansive and demiclosed mapping and
let T': C — C be a quasi-nonexpansive and 2-demiclosed mapping. Suppose
that F (S)NF(T) #0. Leta,b € R with 0 < a <b <1 and let {\n}, {pn},
{vn}, and {£,,} be sequences of real numbers in the interval [a,b] such that
An+ ty, +n+E&, =1 for alln € N. Define a sequence {x,} in C as follows:

1 =x € C: given,

Un = AnZn + ppSTn + vnTxn + &, T 20,

Cn={2€C:|lyn — 2| < [lzn — 2|},

Qn={2€C:{(x—xn, Tn—2) >0}, and
ZTnt1 = Pe,nQ,.T

for all n € N. Then, {x,} converges strongly to a point T of F'(S) N F (T),
where T = Pp(synp(1)Z-

Proof. Letting a, = ¢, = d, = 0 and L = 0 and applying Theorem 5.1, we
obtain the desired result. ([l

As in Section 4, we can obtain Theorem 5.2 and 5.3. To prove Theorem
5.2, the equality (1) of Lemma 2.2 is necessary whereas for Theorem 5.3,
equality (3) of Lemma 2.2 is employed. To confirm this point, inspect (5.11)
in the proof of Theorem 5.1 carefully.

Theorem 5.2. Let C' be a nonempty, closed, and convex subset of H. Let
S, T : C — C be quasi-nonexpansive and demiclosed mappings such that
F(S)NF(T) #0. Let {\}, {pn}, and {vn} be sequences of real numbers
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in the interval [0, 1] that satisfy

A+ o, +vn =1 foralln € N,
Lim Ay, >0, and lim A\,v, > 0.

n—oo n—oo

Leta € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that an + by +cn+dn =1 and a < by, + ¢, + dy
for all n € N. Define a sequence {x,} in C as follows:
x1=x€C: given,
Zn = AnZTn + STy + vnTxy,
n—1
1
n = Undn bnSL n nTM n dn_ Tl n
Y anTn + zZn t+c Zn + o ; Zn,
Cn={weC:|lyn —w| < [lzn —wl|},
Qrn={welC:{(z—2zn, zn—w) >0}, and
Tni1 = PCann$

for all n € N, where L, M € NU{0}. Then, {x,} converges strongly to a
point & of F (S)NF (T), where T = Pp(s)np(1)®-

Theorem 5.3. Let C' be a nonempty, closed, and conver subset of H. Let
S, T : C — C be quasi-nonexpansive and 2-demiclosed mappings such that

F(S)NF(T) #0. Let {An}, {pn}, {vn}, {€n}, and {0n} be sequences of
real numbers in the interval [0, 1] that satisfy

A+ by +n+E,+0n,=1 forallneN,
h—m)‘nun >0, lim A,vp >0,

lim \p§, >0,  lim .0, > 0.

Leta € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that an, + by, +cp +dp =1 and a < by, + ¢, + dy
for all n € N. Define a sequence {x,} in C as follows:

1=z €C: given,

Zn = AnZn + W, STy + Z/nSan + &, Txpn + BnTan,

1 n—1
Yn = Gnn + 608" 20 + T 20 + dn— Y " T'zn,
"3
Cn={weC: |y, — w| < |lzn —wll},
Qn={welC:{(x—2zx,, z,—w) >0}, and
Tnt+l = PCannCU

for all n € N, where L, M € NU{0}. Then, {z,} converges strongly to a
point @ of F (S)NF (T), where T = Pp(s)np()T-
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6. STRONG CONVERGENCE BY SHRINKING PROJECTION METHODS

In this section, we use Takahashi, Takeuchi, and Kubota’s shrinking pro-
jection method [45] to derive strong convergence to common fixed points of
two nonlinear quasi-nonexpansive mappings. The fundamentals of the proof
were improved by many researchers [11, 13, 23, 24, 31, 47]. To achieve this
goal, we consider nonlinear mappings with certain conditions; let C be a
nonempty and closed subset of H, and consider mappings S : C — H and
T : C — C that satisfy

Sxp —2zp, —0 and z, v = veF(S), and (6.1)
Tz, — xp — 0, T?z, — 1z, — 0, and T, —v = veF(T); (6.2
respectively. To fulfill condition (6.1), it is sufficient that S is demiclosed
or continuous. A mapping T satisfies the condition (6.2) if it satisfies any
of the following conditions: (a) T' is demiclosed; (b) T is 2-demiclosed; (c)
T is continuous; or (d) T satisfies the condition (6.1). Therefore, these two

conditions do not greatly restrict the class of mappings to which the result
applies.

Theorem 6.1. Let C' be a nonempty, closed, and convexr subset of H. Let
S, T : C — C be quasi-nonexpansive mappings with F (S) N F(T) # 0.
Suppose that S and T satisfy the conditions (6.1) and (6.2), respectively.
Let {\n}, {tn}, {vn}, and {£,,} be sequences of real numbers in the interval
[0,1] such that

A+ +vn+&,=1 foralln eN,
lim Anp,, >0,  lim Apvp >0, and  lim Ap€, > 0. (6.3)

Let a € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that an, + by, +cn +dp =1 and a < by, + ¢, + dy
for alln € N. Let {u,} be a sequence in H such that u,, — u (€ H). Define
a sequence {xn} in C as follows:

r1=x € C: given

C1 =C,
Zn = AnZn + ,UanfEn +vpTz, + £nT2fEn7

n—1
1
n = AnTn + by Ln nTMn dn— Tln 4
T = il + UnS 2n 16 z—i—ngz, (6.4)
Cry1 ={w € Cn: |lyn — w|| < |lon —wll}, and
Znt1 = Po, unn
for all n € N, where L, M € NU{0}. Then, {xn} converges strongly to a
point U of F (S) N F (T'), where u = Ppg)nr(r)u-

Proof. At the outset, it should be noted that F (S) N F (T) is closed and
convex because S and T are quasi-nonexpansive. From the hypothesis that
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S) N F(T) # 0, the metric projection Pp(gynp(r) from H onto F (S) N
T) exists. Notice that a sequence {u,} in H is given. We now verify that
.5)—(6.7) hold when sequences {z}, {yn}, and {z,} are given. As S and
are quasi-nonexpansive, it holds that

l2n = qll < llzn — 4l (6.5)

for all ¢ € F(S)N F(T) and n € N. The proof of (6.5) is the same as for
(5.3), and hence, we omit it here. Furthermore, it holds that

1 n—1
n2 T =g
1=0

for all ¢ € F(T) and n € N. This can be demonstrated in much the same
way as (5.4). Using (6.5) and (6.6), we obtain

1yn — all < llzn — g (6.7)
for all ¢ € F(S)NF(T) and n € N. The proof of (6.7) is same as that of
(5.5).

Next, observe that

—~~

F
F
6
T

< llzn — 4l (6.6)

e (, is a closed and convex subset of C and
e F(S)NF(T) C Cy, for all n € N.

We use mathematical induction. (i) For n = 1, the desired result is true
because C; = C. (ii) Assume that Cj is closed and convex and F (S) N
F(T) C Ck, where k € N. As F(S)NF(T) # 0 is assumed and F (S) N
F(T) C Cf, we have that C, # (. As Cj is nonempty, closed, and convex,
the metric projection Pr, from H onto Cj exists. Consequently, i (€ Ck),
2k, Yk (€ C), and Cr41 (C C) are defined. As Cj is closed and convex, Cy11
is also closed and convex. We show that F'(S)N F (T) C Ciy1. Let g €
F(S)NF(T). From (6.7), we have |y — q|| < ||zx — ¢||. This implies that
q € Cry1. We obtain F (S) N F (T) C Cky1 as claimed. We demonstrated
that C), is a closed and convex subset of C' and F (S) N F (T) C C, for
alln € N. As F(S)NF(T) # 0 is assumed, C,, # 0 for all n € N.
Consequently, the sequences {z,}, {2}, and {y,} are defined properly.

Define @, = Po,u(€ Cy). As C, C Cpm1 C --- C C1 = C, {u,} is a
sequence in C. It holds that

lu =T || < Ju -4 (6.8)

for all ¢ € F(S)N F(T) and n € N. This is because ¢ € F'(S)NF (T) C
C, and w, = Pc,u. The inequality (6.8) shows that {@,} is bounded.
Furthermore,
[ = | < Jlu = Tnia]
for all n € N because W, = FPc,u and U,1 = FPc, ., u € Cpy1 C Cp. As
{|Ju = @y,||} is bounded and monotone increasing, it is convergent.
We show that there exists w € C such that

Uy, — . (6.9)



ISHIKAWA ITERATION FOR DEMICLOSED AND 2-DEMICLOSED MAPPINGS 27

Choose m,n € N with m > n. As u, = Pc,u and u,, = Po,,u € C,,, C Cp,
we have from (2.2) that

e =Tl + 1T~ G| < e — G|

As {||lu — @]} is convergent, it follows that @, — U, — 0 as m,n — oco. This
means that {@,} is a Cauchy sequence in C. As C is closed in a Hilbert
space H, it is complete. Thus, there exists w € C such that w, — U as
claimed. Furthermore, {z,} has the same limit point, that is,

Tp — . (6.10)

Indeed, as the metric projection Pc, is nonexpansive and u, — u, using
(6.9), we have

[z = || < [l2n =Tl + [T -7
= [|Pe, un — Po, ull + |[@. — ]|
< lun = ull + |[@n —al| = 0

as n — o0o. As a result from (6.10), {z,} is bounded. From (6.7), {y,} is
also bounded.

As {z,} is convergent, x, — n+1 — 0. We show that y, — xny1 — 0.
Indeed, from z, 1 = Pc, Unt1 € Cpy1, it follows that

lyn — znial| < |20 — Znyall -

Using x,, — zn+1 — 0, we have y, — zn,41 — 0. Hence, it results that
Ty — Yn — 0 from

[#n = ynll < lln — Tniall + [0t — ynl — 0. (6.11)
Next, observe that
Stp —xn —0, Tzn—zn—0, and T?zp— zn — 0. (6.12)
To show this, we verify that
lzn —al” < llen = qll* = Mg Iz — Sza? (6.13)
—AnVn ||Tn — T:L'n||2 — M, Hxn — T2:1cn”2

for all ¢ € F(S)NF(T) and n € N. Using (2) in Lemma 2.2 and the
hypotheses that S and T are quasi-nonexpansive, we have the following:

12n — gl (6.14)
= ||An (@0 — @) + pn (Szn — @) + v (T30 — @) + &, (T2 — q) H2
= allon = all® + g 1520 = all’ + v | T — al* + &, | 7?00 — g
At |Zn = Sznll® = Anvn |20 — Tnl|* — Ankn |lzn — T2:13nH2

—pnn |STn — Tn||® — pins HSa:n - TZm'nH2 —uvné, HTasn - TQ.’L‘nHQ
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IN

Mo llzn = ql® + piy 2 — Il + vn llzn — ql® + &, |z — glf?
2
—Anlby, ||Zn — Sat:n”2 — Ann ||Zn — T:zcn||2 — &, ”xn — TanH
2
= ||z — 4|
2 2 2 2
—Anbiy |ZTn — Szn||” — Anvn ||2n — Tzn||” — A&, Hxn -T an .

Thus, (6.13) holds. In view of (6.6), we have
lyn — all®

n—1
an (xn - Q) + by, (SLZn - Q) +cn (TMZn - Q) +d, <% ZTlZn - Q)
=0

IN

an ||Tn — q||* + bn HSLG - qH2 +cn HTMzn - qH2 +d,

=
-~ Zlen —q
1=0
< an o —ql* +ba 120 — ql* + cn 120 — qlI* + dn 120 — q®
= an o0 — g’ + (ba + co + dn) 120 — qll*.
Using (6.13) yields
lyn — ql®
< anll@n = ql* + (bn + cn + dn) (l2n — all” = Aapty |1z — Sza®
“An |Tn — Txn|® — Ak, ||&n — TQ:L’nHQ)
= |lzn — QHQ = (bn + cn + dn) (Anpty llzn — Sa"nHQ + Antn [|Tn — T@"nHQ
-, Hwn - TanHQ).
Therefore, we have
(bn + o + dn) Oty | T — Szn||> + M |20 — T |)?
+Ané, Hmn — Tga:nHQ)
|z = all* = llyn — al?
(lzn — all + lyn — all) (lzn — all = llyn — al))
< (lzn = all + llyn — al) lzn — yall -
Because a < b, + ¢, + d,, is assumed, we have

IN

et 120 = Szl® + Mavn |20 — Tall? + My |20 — T22n]|”)
< (len =gl + llyn — all) llzn — ynll -
Note that a > 0, {z,} and {y,} are bounded, and z, — y, — 0. In ad-
dition, as the parameters A, i, Vn,§,, satisfy (6.3), we obtain (6.12) as
claimed. Since the mappings S and T satisfy the properties (6.1) and (6.2),
respectively, it follows from (6.10) and (6.12) that w e F (S) N F (T).
As a final step, we prove that

n—oo n—oo

2

2
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Asw e F(S)NF(T) and & = Pp(s)nr(r)u, it is sufficient to prove that
lu—1|| <||lu—u|. Asu e F(S)N F(T), it holds from (6.8) that

lw = | < flu—ull

for all n € N. From (6.9), we obtain ||ju —u|| < ||u —u||, and thus, @ = .
From (6.10), z,, — u = u. This completes the proof. O

Remark 6.1. As Remarks 4.1 and 5.1, yp, in (6.4) can be replaced by various
types of sequences such as (5.13).

From Theorem 6.1, the following result is obtained:

Corollary 6.1 ([23]). Let C be a nonempty, closed, and convex subset of H.
Let S,T : C — C be quasi-nonexpansive mappings with F (S) N F (T) # 0.
Suppose that S and T satisfy the conditions (6.1) and (6.2), respectively. Let
a,b e R with 0 <a<b<1andlet{\.}, {p,}, {vn}, and {§,} be sequences
of real numbers in the interval [a,b] such that N\, + w, +vn + &, = 1 for
all n € N. Let {un} be a sequence in H such that u, — u(€ H). Define a
sequence {xyn} in C as follows:

r1=x € C: given,

C,=0C,

Yn = AnZn + ST +vpTx, + fnTan,
Cnr={2€Cn:|lyn —2[| < |lzn — 2|}, and
Tnt+1 = Po, 1 Unt1

for all n € N. Then, {x,} converges strongly to a point u of F'(S) N F (T),
where U = Pp(synp(T)U-

Proof. Letting a,, = ¢, =d,, =0 and L = 0 in Theorem 6.1, we obtain the
desired result. O

As in the previous two sections, the following two theorems can be proved
by using (1) and (3) in Lemma 2.2, respectively. For details, inspect (6.14)
in the proof of Theorem 6.1.

Theorem 6.2. Let C' be a nonempty, closed, and convex subset of H. Let
S, T : C — C be quasi-nonexpansive mappings with F (S) N F(T) # 0.
Suppose that S and T' satisfy the condition (6.1). Let {\.}, {p,}, and {vn}
be sequences of real numbers in the interval [0, 1] such that

An+ iy, +vn =1 forallneN,
Lim Ay, >0, and lim A\,v, > 0.

n—oo n—o0

Let a € (0,1] and let {an}, {bn}, {cn}, and {dn} be sequences of real numbers
in the interval [0,1] such that an +bp +cn +dn =1 and a < by + cp + dp
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for alln € N. Let {u,} be a sequence in H such that u,, — u (€ H). Define
a sequence {xyp} in C as follows:

r1=x€C: given

Ci1=C,

Zn = AnZn + P, STn + vnTxy,

1 n—1
Yn = AnTp + b Stz + e TM 2, + dnﬁ Z len,
=0
Crni1={w € Cn : [lyn —w|| < [lzn —w||}, and
anrl = PCn+1un+1

for all n € N, where L, M € NU{0}. Then, {z,} converges strongly to a
point U of F'(S)NF (T), where U = Pp(s)nr(T)U-

Theorem 6.3. Let C' be a nonempty, closed, and conver subset of H. Let
S, T : C — C be quasi-nonexpansive mappings with F (S) N F(T) # 0.
Suppose that S and T satisfy the condition (6.2). Let {\n}, {un}, {vn},
{&,}, and {0,,} be sequences of real numbers in the interval [0, 1] such that

A+ by +n+E&,+0,=1 forallneN,
h_m)‘n/j’n >O7 li_m)\nyn >0)

lim A\,§, >0,  lim A\,0, > 0.

Leta € (0,1] and let {an}, {bn}, {cn}, and {d,} be sequences of real numbers
in the interval [0,1] such that an, + by, +cn +dn =1 and a < by, + ¢, + dy,
for alln € N. Let {u,} be a sequence in H such that u,, — u (€ H). Define
a sequence {xyn} in C as follows:

z1=x€C: given
Ci1=0C,
Zn = AnZTn + STy + vn Sz, + & Ty, + HnTan,
1 n—1
Yn = QnTp + b5t 5. + 6, T¥ 5, A d Zlen,
"5
Crny1={w € Cp: [lyn —w| < |lzn —w|}, and

Tn+1l = PCn+1un+1
for all n € N, where L, M € NU{0}. Then, {xn} converges strongly to a
point U of F (S) N F (T), where & = Pp(synr(r)u-
7. CONCLUDING REMARKS

This paper establishes weak and strong convergence theorems for finding
common fixed points of two quasi-nonexpansive mappings using Ishikawa
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iteration. For the main theorems, the mappings are required to be demi-
closed or, more generally, 2-demiclosed. Some remarks are given below.
Firstly, all theorems in this paper apply to generalized hybrid mappings
because generalized hybrid mappings are demiclosed, and to nonexpansive
mappings because nonexpansive mappings are generalized hybrid. Secondly,
employing the shrinking projection method allows one to relax the condi-
tions imposed on the mappings further to (6.1) or (6.2), as shown in Section
6. Thirdly, in all the presented theorems, the mappings are not required
to be continuous or commutative. Examples of demiclosed or 2-demiclosed
mappings that are not continuous are given in Section 3. Fourthly, as was
pointed out in remarks, the construction of the convergent sequences can
be generalized beyond the statements of the main theorems. Fifthly, all
results in this paper can be extended to cases of finitely many demiclosed
or 2-demiclosed mappings. Finally, weak and strong convergence theorems
can also be obtained for m-demiclosed mappings.

Acknowledgment. This work is financially supported by the Ryousui
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