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Abstract. We establish a �xed point theorem for a class of mappings called
generic 2-generalized hybrid mappings in the setting of a real Hilbert space.
Two examples of that class of mappings are presented herein. The mappings
are not quasi-nonexpansive even though they have �xed points. One of the
mappings is not continuous. The �xed point theorem proved in this article
improves many previous works in the literature.

1. Introduction

Let E be a Banach space with a norm k�k. For a mapping T : C ! E, the set of
�xed points is denoted as

F (T ) = fx 2 C : Tx = xg ;
where C is a nonempty subset of E. The Schauder �xed point theorem [21] asserts
that any continuous mapping de�ned on a compact and convex set has a �xed point.
A mapping T : C ! E is called nonexpansive if

kTx� Tyk � kx� yk for all x; y 2 C:
Obviously, a nonexpansive mapping is continuous. Under the setting of a re�ex-
ive Banach space, Kirk [12] proved the existence of �xed points for nonexpansive
mappings by supposing that C is weakly compact and has �normal structure�; for
related results, see also Browder [3] and Göhde [4]. It is known that a nonempty,
closed, and convex subset of a Hilbert space has the normal structure (see Prob-
lem 4.4.2 in Takahashi [22]). Therefore, the following theorem is derived from the
Browder-Göhde-Kirk�s �xed point theorems:

Theorem 1.1. Let C be a nonempty, closed, convex, and bounded subset of a real
Hilbert space H. Let T be a nonexpansive mapping from C into itself. Then, F (T )
is nonempty.

In the following part of this article, we use H to denote a real Hilbert space
with an inner product h�; �i and the induced norm k�k. Theorem 1.1 is extended in
various directions. The conditions required for a mapping are relaxed to uniformly
include many important types of mappings. Kocourek et al., in their work in
2010 [13], proposed a broad class of mappings: A mapping T : C ! H is called
generalized hybrid if there exist �; � 2 R such that

� kTx� Tyk2 + (1� �) kx� Tyk2 � � kTx� yk2 + (1� �) kx� yk2
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for all x; y 2 C, where R is the set of real numbers. This is also known as (�; �)-
generalized hybrid mappings. A (1; 0)-generalized hybrid mapping is nonexpansive,
and a nonexpansive mapping is a special case of the generalized hybrid mappings.
Similarly, a (2; 1)-generalized hybrid mapping is nonspreading [14, 15], and a

�
3
2 ;

1
2

�
-

generalized hybrid mapping is hybrid [23]. Nonspreading mappings are deduced
from optimization problems. Igarashi et al. [6] illustrated that a nonspreading
mapping is not necessarily continuous. Hence, a generalized hybrid mapping is not
necessarily continuous. Kocourek et al. [13] proved a �xed point theorem and weak
convergence theorems for �nding �xed points of generalized hybrid mappings.
A mapping T : C ! C is called 2-generalized hybrid [18] if there exist �1; �2; �1; �2 2

R such that

�1


T 2x� Ty

2 + �2 kTx� Tyk2 + (1� �1 � �2) kx� Tyk2

� �1


T 2x� y

2 + �2 kTx� yk2 + (1� �1 � �2) kx� yk2

for all x; y 2 C. The class of 2-generalized hybrid mappings contains generalized
hybrid mappings as a special case of �1 = �1 = 0. Hojo et al. [5] provided examples
of 2-generalized hybrid mappings that are not generalized hybrid. Maruyama et al.
[18] proved a �xed point theorem for this type of mappings in Hilbert spaces; see
also Alizadeh and Moradlou [1, 2] and Rouhani [19]. Many researchers have studied
approximation methods for �nding �xed points of 2-generalized hybrid mappings;
see, for instance, [1, 2, 5, 18, 19, 20]. A mapping T : C ! H that has a �xed point
is quasi-nonexpansive if

kTx� uk � kx� uk for all x 2 C and u 2 F (T ) :

A 2-generalized hybrid mapping with a �xed point is quasi-nonexpansive, which was
demonstrated by Maruyama et al. [18]. The previous studies cited here utilized
the fact that the mappings are quasi-nonexpansive to prove convergence theorems
for �nding �xed points.
Recently, Kondo and Takahashi [16, 17] introduced a more general class of map-

pings than the 2-generalized hybrid mappings. A mapping T : C ! C is called
generic 2-generalized hybrid if there exist �ij ; �i; 
i 2 R (i; j = 0; 1; 2) such that

�00kx� yk2 + �01kx� Tyk2 + �02kx� T 2yk2(1.1)

+�10 kTx� yk2 + �11 kTx� Tyk2 + �12


Tx� T 2y

2

+�20


T 2x� y

2 + �21 

T 2x� Ty

2 + �22 

T 2x� T 2y

2

+�0 kx� Txk
2
+ �1



Tx� T 2x

2 + �2 

T 2x� x

2
+
0 ky � Tyk

2
+ 
1



Ty � T 2y

2 + 
2 

T 2y � y

2 � 0
for all x; y 2 C. They assumed certain parameter conditions on the mapping.
Under the conditions, the mapping becomes quasi-nonexpansive if it has a �xed
point. Kondo and Takahashi proved various types of convergence theorems that
approximate �xed points by using the fact that the mapping is quasi-nonexpansive.
In addition to the convergence theorems, they also proved the existence of �xed
points for generic 2-generalized hybrid mappings. However, the conditions imposed
on the parameters �ij ; �i; 
i (2 R) were still restrictive. For �xed point theorems for
another class of mappings in Hilbert spaces, see Takahashi et al. [24], Kawasaki and
Takahashi [11], and Kawasaki and Kobayashi [10], whereas for recent contributions
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to �xed point theorems in settings of Banach spaces, see Kawasaki [7, 8, 9] and
articles cited therein.
In this article, we establish a �xed point theorem for generic 2-generalized hybrid

mappings under relaxed conditions on the parameters �ij ; �i; 
i (2 R) than in the
previous works by Kondo and Takahashi [16, 17]. Our theorem includes cases such
as

� kTx� Tyk2 + (1� �)


T 2x� T 2y

2 � kx� yk2 ;(1.2)

� kTx� yk2 + (1� �)


T 2x� y

2 � kx� yk2 ;(1.3)

� kTx� Tyk2 + (1� �)


T 2x� Ty

2 � kx� Tyk2 ;(1.4)

�


Tx� T 2y

2 + (1� �)

T 2x� T 2y

2 � 

x� T 2y

2 ;(1.5)

for all x; y 2 C, where �; �; �; � 2 (0; 1]. These types of mappings are generic
2-generalized hybrid. For example, if �00 = �1, �11 = �, �22 = 1 � �, and the
other parameters are all 0 in (1.1), the condition (1.2) is obtained. The parame-
ter combinations in (1.2)�(1.5) were not addressed in the previous works [16, 17].
Moreover, a mapping with any of the conditions (1.2)�(1.5) is not necessarily quasi-
nonexpansive even if it has a �xed point. In Section 2, the main theorem is proved.
The theorem extends many existing results, and it simultaneously guarantees the
existence of �xed points in mappings characterized by the conditions (1.2)�(1.5).
Some remarks concerning the main theorem are given in Section 3. In Section 4,
examples for which we address in this article, but are not in previous studies are
presented. One of these examples is not continuous, although it satis�es (1.5).

2. Main Result

This section presents the main theorem of this article. Although the previous
work by Kondo and Takahashi [16] addressed the �xed point problem for (�ij ; �i; 
i;
i; j = 0; 1; 2)-generic 2-generalized hybrid mappings, we relax conditions on the
parameters (�ij ; �i; 
i; i; j = 0; 1; 2) to prove a �xed point theorem. First, we
prepare the following lemma. Although part (1) of Lemma 2.1 was proved by
Kondo and Takahashi [16], we reproduce the proof for completeness. As part (2) is
necessary to further extend Theorem 2.1, we prepare it herein.

Lemma 2.1. (1) Let �; � 2 R such that � + � � 0, and let fang and fbng be
sequences of nonnegative real numbers such that an � bn ! 0. Then, it holds that
lim infn!1 (�an + �bn) � 0.
(2) Let �; �; 
 2 R such that � + � + 
 � 0, and let fang, fbng, and fcng be

sequences of nonnegative real numbers such that an � bn ! 0, bn � cn ! 0, and
cn � an ! 0. Then, it holds that lim infn!1 (�an + �bn + 
cn) � 0.

Proof. (1) If � = � = 0, the desired result follows. Assume, without loss of gener-
ality, that � > 0. We prove that

8" > 0; 9n0 2 N such that n � n0 =) �an + �bn > �";

where N is the set of positive integers. Let " > 0. As an � bn ! 0, we have that
for a positive real number "=� > 0,

(2.1) 9n0 2 N such that n � n0 =) bn �
"

�
< an

�
< bn +

"

�

�
:
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Let n � n0. Using � > 0; �+ � � 0; and bn � 0; we obtain from (2.1) that

�an + �bn > �
�
bn �

"

�

�
+ �bn

= (�+ �) bn � " � �":

This ends the proof for (1).
(2) If � + � = 
 = 0, then the desired result follows from (1). The rest of the

proof is divided into two cases: (i) � + � > 0; and (ii) 
 > 0. Our aim is to show
that

(2.2) 8" > 0; 9n0 2 N such that n � n0 =) �an + �bn + 
cn > �":

(i) First, assume that �+� > 0, and assume, without loss of generality, that � > 0.
As an � bn ! 0 and � > 0, it holds that

(2.3) 9n1 2 N such that n � n1 =) bn �
"

2�
< an

�
< bn +

"

2�

�
:

As bn � cn ! 0 and �+ � > 0, we have that

(2.4) 9n2 2 N such that n � n2 =) cn �
"

2 (�+ �)
< bn

�
< cn +

"

2 (�+ �)

�
:

De�ne n0 � max fn1; n2g 2 N, and let n � n0. Then, as � > 0, � + � > 0,
�+ � + 
 � 0, and cn � 0, we obtain from (2.3) and (2.4) that

�an + �bn + 
cn

> �
�
bn �

"

2�

�
+ �bn + 
cn

= (�+ �) bn �
"

2
+ 
cn

> (�+ �)

�
cn �

"

2 (�+ �)

�
� "

2
+ 
cn

= (�+ � + 
) cn � " � �":

Therefore, (2.2) holds.
(ii) Next, assume that 
 > 0. If � + � = 0, then it holds from (1) that

lim infn!1 (�an + �bn) � 0. Using 
 > 0 and cn � 0, we have the desired re-
sult (2.2) as follows:

lim inf
n!1

(�an + �bn + 
cn)

� lim inf
n!1

(�an + �bn) + lim inf
n!1


cn

� lim inf
n!1


cn � 0:

Hence, we can assume that �+� < 0. It follows from bn� cn ! 0 and cn�an ! 0
that

(2.5)
�

�+ �
an +

�

�+ �
bn � cn ! 0:

Let " > 0, and de�ne dn � �
�+�an +

�
�+� bn 2 R. The expression (2.5) means that

cn � dn ! 0. It follows that for a positive real number "=2
 > 0,

(2.6) 9n3 2 N such that n � n3 =) dn �
"

2

< cn

�
< dn +

"

2


�
:
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Since �+ � + 
 � 0, cn � dn ! 0, and cn � 0, we obtain

(2.7) 9n4 2 N such that n � n4 =) (�+ � + 
) dn > �
"

2
:

De�ne n0 � max fn3; n4g 2 N, and let n � n0. Then, as 
 > 0, we obtain from
(2.6) and (2.7) that

�an + �bn + 
cn

= (�+ �)

�
�

�+ �
an +

�

�+ �
bn

�
+ 
cn

= (�+ �) dn + 
cn

> (�+ �) dn + 


�
dn �

"

2


�
= (�+ � + 
) dn �

"

2
> �":

This completes the proof. �

For an (�ij ; �i; 
i; i; j = 0; 1; 2)-generic 2-generalized hybrid mapping, we use
the following notations:

�i� � �i0 + �i1 + �i2; ��i � �0i + �1i + �2i; and(2.8)

��� �
X

i;j=0;1;2

�ij ;

where i = 0; 1; 2. We denote by xn * x a weak convergence of a sequence fxng in
H to a point x (2 H). For a mapping T : C ! C, de�ne

(2.9) F�1 (T ) �
�
x 2 C : Tx = T 2x

	
;

whereC is a nonempty subset of H. It is obvious that x 2 F�1 (T ) is equivalent
with Tx 2 F (T ). The main theorem of this article is as follows:

Theorem 2.1. Let C be a nonempty, closed, and convex subset of H, and let
T : C ! C be an (�ij ; �i; 
i; i; j = 0; 1; 2)-generic 2-generalized hybrid mapping.
Suppose that there exists an element z 2 C such that the sequence fTnzg in C is
bounded. Consider the following conditions:
(1a) ��� � 0; �1� + �0 > 0; �1 � 0; �2� + �2 � 0; 
0 + 
1 � 0; 
2 � 0;
(1b) ��� � 0; �1� + �0 � 0; �1 � 0; �2� + �2 > 0; 
0 + 
1 � 0; 
2 � 0;
(1c) ��� � 0; �1� + �0 � 0; �1 > 0; �2� + �2 � 0; 
0 + 
1 � 0; 
2 � 0;
(2a) ��� � 0; ��1 + 
0 > 0; 
1 � 0; ��2 + 
2 � 0; �0 + �1 � 0; �2 � 0;
(2b) ��� � 0; ��1 + 
0 � 0; 
1 � 0; ��2 + 
2 > 0; �0 + �1 � 0; �2 � 0;
(2c) ��� � 0; ��1 + 
0 � 0; 
1 > 0; ��2 + 
2 � 0; �0 + �1 � 0; �2 � 0:
If (1a) or (2a) is satis�ed, then F (T ) is nonempty. If (1b) or (2b) is satis�ed,

then F
�
T 2
�
is nonempty. If (1c) or (2c) is satis�ed, then F�1 (T ) is nonempty,

where F�1 (T ) is de�ned in (2:9). Furthermore, T has at most one �xed point if
��� > 0.

Proof. Case (1abc). Suppose that ��� � 0; 
0 + 
1 � 0; and 
2 � 0. De�ne

Snz �
1

n

n�1X
k=0

T kz
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for each n 2 N. Then, fSnzg is a sequence in C since C is convex. As fTnzg
is bounded, so is fSnzg. There exist a subsequence fSnizg of fSnzg and v 2 H
such that Sniz * v. Note that since C is closed and convex, it is weakly closed.
Since fSnizg is a sequence in C, Sniz * v, and C is weakly closed, it holds that
v 2 C. Therefore, Tv and T 2v (2 C) exist. As T is (�ij ; �i; 
i; i; j = 0; 1; 2)-generic
2-generalized hybrid, we have from (1.1) that

�00kv � T kzk2 + �01


v � T k+1z

2 + �02 

v � T k+2z

2

+�10


Tv � T kz

2 + �11 

Tv � T k+1z

2 + �12 

Tv � T k+2z

2

+�20kT 2v � T kzk2 + �21


T 2v � T k+1z

2 + �22 

T 2v � T k+2z

2

+�0 kv � Tvk
2
+ �1



Tv � T 2v

2 + �2 

T 2v � v

2
+
0



T kz � T k+1z

2 + 
1 

T k+1z � T k+2z

2 + 
2 

T k+2z � T kz

2 � 0
for all k 2 N[f0g. As 
2 � 0, subtracting 
2



T k+2z � T kz

2 (� 0) from the
left-hand side, we have that

�00


v � T kz

2 + �01 

v � T k+1z

2 + �02 

v � T k+2z

2

+�10

�
kTv � vk2 + 2



Tv � v; v � T kz

�
+


v � T kz

2�

+�11

�
kTv � vk2 + 2



Tv � v; v � T k+1z

�
+


v � T k+1z

2�

+�12

�
kTv � vk2 + 2



Tv � v; v � T k+2z

�
+


v � T k+2z

2�

+�20

�

T 2v � v

2 + 2 
T 2v � v; v � T kz�+ 

v � T kz

2�
+�21

�

T 2v � v

2 + 2 
T 2v � v; v � T k+1z�+ 

v � T k+1z

2�
+�22

�

T 2v � v

2 + 2 
T 2v � v; v � T k+2z�+ 

v � T k+2z

2�
+�0 kv � Tvk

2
+ �1



Tv � T 2v

2 + �2 

T 2v � v

2
+
0



T kz � T k+1z

2 + 
1 

T k+1z � T k+2z

2 � 0:
From this, the following holds:

��0


v � T kz

2 + ��1 

v � T k+1z

2 + ��2 

v � T k+2z

2

+2�10


Tv � v; v � T kz

�
+ 2�11



Tv � v; v � T k+1z

�
+2�12



Tv � v; v � T k+2z

�
+2�20



T 2v � v; v � T kz

�
+ 2�21



T 2v � v; v � T k+1z

�
+2�22



T 2v � v; v � T k+2z

�
+(�1� + �0) kTv � vk

2
+ �1



Tv � T 2v

2 + (�2� + �2)

T 2v � v

2
+
0



T kz � T k+1z

2 + 
1 

T k+1z � T k+2z

2 � 0:
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This yields that

���


v � T kz

2 + ��1 �

v � T k+1z

2 � 

v � T kz

2�

+��2

�

v � T k+2z

2 � 

v � T kz

2�
+2


Tv � v; �1�v � �10T kz � �11T k+1z � �12T k+2z

�
+2


T 2v � v; �2�v � �20T kz � �21T k+1z � �22T k+2z

�
+(�1� + �0) kTv � vk

2
+ �1



Tv � T 2v

2 + (�2� + �2)

T 2v � v

2
+
0



T kz � T k+1z

2 + 
1 

T k+1z � T k+2z

2 � 0:
Since ��� � 0, subtracting ���



v � T kz

2 (� 0) from the left-hand side yields

��1

�

v � T k+1z

2 � 

v � T kz

2�+ ��2 �

v � T k+2z

2 � 

v � T kz

2�(2.10)

+2


Tv � v; �1�v �

�
�1�T

kz + �11
�
T k+1z � T kz

�
+ �12

�
T k+2z � T kz

�	�
+2


T 2v � v; �2�v �

�
�2�T

kz + �21
�
T k+1z � T kz

�
+ �22

�
T k+2z � T kz

�	�
+(�1� + �0) kTv � vk

2
+ �1



Tv � T 2v

2 + (�2� + �2)

T 2v � v

2
+
0



T kz � T k+1z

2 + 
1 

T k+1z � T k+2z

2 � 0:
Take n 2 N and �x it momentarily. Summing the inequalities in (2.10) with respect
to k from 0 to n� 1, and dividing by n, we have

1

n
��1

�
kv � Tnzk2 � kv � zk2

�
(2.11)

+
1

n
��2

�

v � Tn+1z

2 + kv � Tnzk2 � kv � Tzk2 � kv � zk2�
+2hTv � v; �1�v � f�1�Snz +

1

n
�11 (T

nz � z)

+
1

n
�12

�
Tn+1z + Tnz � Tz � z

�
gi

+2hT 2v � v; �2�v � f�2�Snz +
1

n
�21 (T

nz � z)

+
1

n
�22

�
Tn+1z + Tnz � Tz � z

�
gi

+(�1� + �0) kTv � vk
2
+ �1



Tv � T 2v

2 + (�2� + �2)

T 2v � v

2
+
0

1

n

n�1X
k=0



T kz � T k+1z

2 + 
1 1n
n�1X
k=0



T k+1z � T k+2z

2 � 0:
Since fTnzg is bounded, it holds that

1

n

n�1X
k=0



T kz � T k+1z

2 � 1

n

n�1X
k=0



T k+1z � T k+2z

2 ! 0 as n!1:

Since 
0 + 
1 � 0, we have from Lemma 2.1-(1) that

lim inf
n!1

 

0
1

n

n�1X
k=0



T kz � T k+1z

2 + 
1 1n
n�1X
k=0



T k+1z � T k+2z

2! � 0:
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Replacing n with ni, and taking the lim inf as i!1 in (2.11), we obtain

2�1� hTv � v; v � vi+ 2�2�


T 2v � v; v � v

�
+ (�1� + �0) kTv � vk

2
+ �1



Tv � T 2v

2 + (�2� + �2)

T 2v � v

2 � 0:
Therefore,

(2.12) (�1� + �0) kTv � vk
2
+ �1



Tv � T 2v

2 + (�2� + �2)

T 2v � v

2 � 0:
(a) Assume that �1� + �0 > 0, �1 � 0, and �2� + �2 � 0. Since �1 � 0 and
�2� + �2 � 0, subtracting

�1


Tv � T 2v

2 + (�2� + �2)

T 2v � v

2 (� 0)

from the left-hand side of (2.12) yields

(�1� + �0) kTv � vk
2 � 0:

Dividing by �1� + �0 (> 0), we obtain kTv � vk
2 � 0. This means that Tv =

v. Therefore, F (T ) is nonempty. (b) Assume that �1� + �0 � 0, �1 � 0, and
�2� + �2 > 0. Since �1� + �0 � 0 and �1 � 0, we have from (2.12) that

(�2� + �2)


T 2v � v

2 � 0:

Since �2�+ �2 > 0, it holds that F
�
T 2
�
6= ;. (c) Similarly, if �1�+ �0 � 0, �1 > 0,

and �2� + �2 � 0, then Tv = T 2v. This means that F�1 (T ) 6= ;. This completes
the proof for Case (1abc).
Case (2abc). In much the same way as the proof for Case (1abc), we can obtain

the desired result.
Finally, we prove the uniqueness of a �xed point of T . Assume that ��� > 0.

Let u; v 2 F (T ). As T is a (�ij ; �i; 
i; i; j = 0; 1; 2)-generic 2-generalized hybrid
mapping, we have from (1.1) that

�00 ku� vk2 + �01 ku� Tvk2 + �02


u� T 2v

2

+�10 kTu� vk2 + �11 kTu� Tvk2 + �12


Tu� T 2v

2

+�20


T 2u� v

2 + �21 

T 2u� Tv

2 + �22 

T 2u� T 2v

2

+�0 ku� Tuk
2
+ �1



Tu� T 2u

2 + �2 

T 2u� u

2
+
0 kv � Tvk

2
+ 
1



Tv � T 2v

2 + 
2 

T 2v � v

2 � 0:
Since u; v 2 F (T ) � F

�
T 2
�
, it holds that u = Tu = T 2u and v = Tv = T 2v.

Thus, we obtain ��� ku� vk2 � 0. Since ��� > 0 is assumed, we obtain u = v. The
proof is completed. �

3. Remarks

In this section, some remarks are given concerning Theorem 2.1 established in
the previous section. Let T be a mapping from C into itself, where C is a nonempty
subset of H. First, by analogy from (2.9), de�ne

(3.1) F�l (T ) �
�
x 2 C : T lx = T l+1x
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where l 2 N. Obviously, x 2 F�l (T ) is equivalent to T lx 2 F (T ). It is easy to
verify that

F (T ) = \1l=1F
�
T l
�
� F�1 (T ) � F�2 (T ) � F�3 (T ) � � � � and(3.2)

F
�
T 2
�
= \1l=1F

�
T 2l
�
:(3.3)

Thus, if (1a) or (2a) in Theorem 2.1 is satis�ed, it follows from (3.2) that�
\1l=1F

�
T l
��
\
�
\1l=1F�l (T )

�
6= ;

since F (T ) is nonempty in such cases. Similarly, if (1b) or (2b) is satis�ed, then
we have from (3.3) that \1l=1F

�
T 2l
�
6= ;. If (1c) or (2c) is satis�ed, then it holds

from (3.2) that \1l=1F�l (T ) 6= ;. We have obtained the following corollary:

Corollary 3.1. Let C be a nonempty, closed, and convex subset of H, and let
T : C ! C be an (�ij ; �i; 
i; i; j = 0; 1; 2)-generic 2-generalized hybrid mapping.
Suppose that there exists an element z 2 C such that the sequence fTnzg in C
is bounded. Consider the conditions (1a)�(2c) in Theorem 2:1. If (1a) or (2a) is
satis�ed, then

�
\1l=1F

�
T l
��
\
�
\1l=1F�l (T )

�
is nonempty, where F�l (T ) is de�ned

in (3:1). If (1b) or (2b) is satis�ed, then \1l=1F
�
T 2l
�
is nonempty. If (1c) or (2c)

is satis�ed, then \1l=1F�l (T ) is nonempty.

Second, Theorem 2.1 can be generalized to the case of a generic L-generalized
hybrid mapping, where L 2 N. Although we have proved Theorem 2.1 by using
Lemma 2.1-(1), the theorem with the case of a generic 3-generalized hybrid mapping
can be proved by using Lemma 2.1-(2).
Third, we compare Theorem 2.1 with the previous result in Kondo and Takahashi

[16]:

Theorem 3.1 ([16]). Let C be a nonempty, closed, and convex subset of H, and
let T : C ! C be an (�ij ; �i; 
i; i; j = 0; 1; 2)-generic 2-generalized hybrid mapping.
Suppose that T satis�es one of the following conditions:
(1A) �0� + �1� � 0; �2� � 0; �1� + �0 > 0; �1; �2 � 0; 
0 + 
1 � 0; 
2 � 0;
(2A) ��0 + ��1 � 0; ��2 � 0; ��1 + 
0 > 0; 
1; 
2 � 0; �0 + �1 � 0; �2 � 0:
If there exists an element x 2 C such that the sequence fTnzg in C is bounded,

then F (T ) is nonempty. Furthermore, a generic 2-generalized hybrid mapping T
has at most one �xed point if ��� > 0.

In the statement of Theorem 3.1, the notations �i�, ��i, and ��� are de�ned
in (2.8). It is apparent that (1A) (resp. (2A)) in Theorem 3.1 is more restrictive
than (1a) (resp. (2a)) in Theorem 2.1. The condition (1A) requires �0� + �1� � 0
and �2� � 0, whereas the corresponding part of (1a) is ��� � 0. According to [16],
under the condition (1A) or (2A), T is quasi-nonexpansive if it has a �xed point,
whereas under the condition (1a) or (2a), that is not guaranteed. To illustrate the
di¤erence, consider cases (i)�(iv) that satisfy the condition (1a) and (2a), but do
not satisfy (1A) nor (2A).
Let T be an (�ij ; �i; 
i; i; j = 0; 1; 2)-generic 2-generalized hybrid mapping that

is characterized by (1.1). (i) Substituting �00 = �1, �11 = �, �22 = 1� �, and the
other parameters all equal to 0 into (1.1), we obtain

(3.4) � kTx� Tyk2 + (1� �)


T 2x� T 2y

2 � kx� yk2 for all x; y 2 C;
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where � 2 (0; 1]. (ii) Letting �00 = �1; �10 = �, �20 = 1 � �, and the other
parameters all equal to 0, we have that

(3.5) � kTx� yk2 + (1� �)


T 2x� y

2 � kx� yk2 for all x; y 2 C;

where � 2 (0; 1]. (iii) Letting �00 = �1; �10 = �, �20 = 1 � �, and the other
parameters all equal to 0, we have that

(3.6) � kTx� Tyk2 + (1� �)


T 2x� Ty

2 � kx� Tyk2 for all x; y 2 C;

where � 2 (0; 1]. (iv) Letting �00 = �1; �10 = �, �20 = 1 � �, and the other
parameters all equal to 0, we have that

(3.7) �


Tx� T 2y

2 + (1� �)

T 2x� T 2y

2 � 

x� T 2y

2 for all x; y 2 C;

where � 2 (0; 1]. The parameter combinations satisfy (1a) and (2a) in Theorem 2.1,
but do not satisfy (1A) nor (2A) in Theorem 3.1. In the next section, we present
examples of mappings, each of which satis�es (3.4) or (3.7).
Although a mapping that satis�es either of the conditions (3.4)�(3.7) is a special

case of the generic 2-generalized hybrid mapping that is addressed in Theorem
2.1, we present a proof of a �xed point theorem concerning a general version of a
mapping characterized by (3.4) as an exercise, because the conditions in Theorem
2.1 seem to be a bit complicated.

Theorem 3.2. Let C be a nonempty, closed, and convex subset of H. Let L 2 N,
and let �1; � � � ; �L 2 [0; 1] that satis�es

PL
l=1 �l = 1. Let T be a mapping from C

into itself such that

(3.8)
LX
l=1

�l


T lx� T ly

2 � kx� yk2

for all x; y 2 C. Suppose that there exists an element z 2 C such that fTnzg is a
bounded sequence in C. If �l > 0, then F

�
T l
�
is nonempty, where l = 1; � � � ; L.

Proof. For brevity, we present a proof for the case of L = 3. De�ne

S0nz =
1

n

n�1X
k=0

T kz; S1nz =
1

n

nX
k=1

T kz;

S2nz =
1

n

n+1X
k=2

T kz; S3nz =
1

n

n+2X
k=3

T kz:

As C is convex,
�
S0nz

	
,
�
S1nz

	
,
�
S2nz

	
, and

�
S3nz

	
are sequences in C. As fTnzg

is bounded, so is
�
S0nz

	
. Hence, there exists a subsequence

�
S0niz

	
of
�
S0nz

	
such

that S0niz * v for some v 2 H. As C is closed and convex, it is weakly closed. As�
S0niz

	
� C and S0niz * v, we have v 2 C. Hence, T lv (2 C) exists for l = 1; � � � ;

L.
Next, observe that

(3.9) S1niz * v; S2niz * v; S3niz * v

as i!1. It can be veri�ed as follows: First, note that

(3.10) S0nz � S1nz ! 0; S0nz � S2nz ! 0; S0nz � S3nz ! 0:
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Indeed, it holds that

S0nz � S3nz

 =






 1n
n�1X
k=0

T kz � 1

n

n+2X
k=3

T kz







=

1

n



z + Tz + T 2z � Tnz � Tn+1z � Tn+2z

 :
As fTnzg is bounded, we obtain S0nz�S3nz ! 0. Similarly, the other parts of (3.10)
can be demonstrated. As S0niz * v, we have from (3.10) that S1niz * v; S2niz * v,
and S3niz * v as claimed.
From (3.8) with L = 3, it holds that

�1


T k+1z � Tv

2 + �2 

T k+2z � T 2v

2 + �3 

T k+3z � T 3v

2 � 

T kz � v

2

for all k 2 N [ f0g. This yields

�1

�

T k+1z � v

2 + 2 
T k+1z � v; v � Tv�+ kv � Tvk2�
+�2

�

T k+2z � v

2 + 2 
T k+2z � v; v � T 2v�+ 

v � T 2v

2�
+�3

�

T k+3z � v

2 + 2 
T k+3z � v; v � T 3v�+ 

v � T 3v

2�
�


T kz � v

2 :

As �1 + �2 + �3 = 1, it follows that

�1

�

T k+1z � v

2 � 

T kz � v

2�+ �1 kv � Tvk2
+�2

�

T k+2z � v

2 � 

T kz � v

2�+ �2 

v � T 2v

2
+�3

�

T k+3z � v

2 � 

T kz � v

2�+ �3 

v � T 3v

2
+2�1



T k+1z � v; v � Tv

�
+ 2�2



T k+2z � v; v � T 2v

�
+2�3



T k+3z � v; v � T 3v

�
� 0:

Let n 2 N. Summing these expressions with respect to k = 0; 1; � � � ; n � 1 and
dividing by n, we obtain

�1
n

�
kTnz � vk2 � kz � vk2

�
+
�2
n

�

Tn+1z � v

2 + kTnz � vk2 � kTz � vk2 � kz � vk2�
+
�3
n
(


Tn+2z � v

2 + 

Tn+1z � v

2 + kTnz � vk2
�


T 2z � v

2 � kTz � vk2 � kz � vk2)

+�1 kv � Tvk2 + �2


v � T 2v

2 + �3 

v � T 3v

2

+2�1


S1nz � v; v � Tv

�
+ 2�2



S2nz � v; v � T 2v

�
+2�3



S3nz � v; v � T 3v

�
� 0:

Note that fTnzg is bounded. Replacing n by ni, and taking the limit as i ! 1,
we have from (3.9) that

(3.11) �1 kv � Tvk2 + �2


v � T 2v

2 + �3 

v � T 3v

2 � 0:
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Assume that �1 > 0. As �2; �3 � 0, subtracting

�2


v � T 2v

2 + �3 

v � T 3v

2 (� 0)

from the left-hand side of (3.11) yields

�1 kv � Tvk2 � 0:
Dividing by �1 (> 0), we obtain kv � Tvk2 � 0. This means v = Tv. Thus,
F (T ) 6= ;. Similarly, if �l > 0, then F

�
T l
�
6= ; for l = 2; 3. This completes the

proof. �

Theorem 3.2 with L = 2 corresponds to (3.4), whereas it includes Theorem 1.1
as a special case of L = 1.

4. Examples

This section presents examples of generic 2-generalized hybrid mappings to il-
lustrate the di¤erence of parameter conditions between those in Theorem 2.1 and
Theorem 3.1. Theorem 2.1 is the main result of this article, whereas Theorem 3.1
is in a previous work by Kondo and Takahashi [16]. Mappings characterized by
the conditions (3.4)�(3.7) are appropriate for that aim. We present two examples.
First, letting � = 1=2 in (3.4) yields

(4.1) kTx� Tyk2 +


T 2x� T 2y

2 � 2 kx� yk2 for all x; y 2 C:

The following mapping satis�es (4.1).

Example 1. We consider the case of H = C = R. Mapping T : R! R is
de�ned as follows:

(4.2) Tx =

�
0 if x � 0;

�
p
2x if x < 0:

It is easily ascertained that T is not quasi-nonexpansive, although it has a �xed
point 0 (2 R). Therefore, T is not in the class of mappings addressed in previous
studies cited in this article.
We verify that the function T de�ned by (4.2) satis�es the condition (4.1). Let

x; y 2 R. (i) If x; y � 0, then Tx = Ty = T 2x = T 2y = 0. Thus, the condition
(4.1) is met. (ii) If x; y < 0, then it holds that Tx = �

p
2x, Ty = �

p
2y, and

T 2x = T 2y = 0. Therefore, it follows that

kTx� Tyk2 +


T 2x� T 2y

2 � 2kx� yk2

=
�
�
p
2x+

p
2y
�2
� 2 (x� y)2 = 0:

This indicates that the condition (4.1) is satis�ed. (iii) If x � 0 and y < 0, then
Ty = �

p
2y and Tx = T 2x = T 2y = 0. Thus, it holds that

kTx� Tyk2 +


T 2x� T 2y

2 � 2kx� yk2

= kTyk2 � 2kx� yk2

= 2y2 � 2 (x� y)2

= �2x(x� 2y) � 0:
Thus, the condition (4.1) follows. From the above, the mapping de�ned by (4.2)
satis�es (4.1) as claimed. �
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Next, we present an example that satis�es (3.7). Letting � = 1=2 in (3.7), we
have

(4.3)


Tx� T 2y

2 + 

T 2x� T 2y

2 � 2

x� T 2y

2 for all x; y 2 C:

Although the mapping in Example 1 also satis�es (4.3), we present another example
that is not continuous. The mapping in Example 2 is a variant of those in Igarashi
et al. [6] or Hojo et al. [5].

Example 2. Let H be a Hilbert space, and set C = H. De�ne a nonlinear
mapping T : H ! H as follows:

(4.4) Tx =

(
2x
kxk if

p
2 < kxk and kxk 6= 2;

0 if kxk �
p
2 or kxk = 2:

It is easy to verify that T is not quasi-nonexpansive, although it has a �xed point
0 (2 H).
We show that the mapping T de�ned by (4.4) satis�es the condition (4.3). Let

x; y 2 C = H. It can be immediately recognized that T 2x = T 2y = 0. We consider
two cases according to kxk. (i) If kxk �

p
2 or kxk = 2, then Tx = 0. Thus, the

condition (4.3) is satis�ed. (ii) If
p
2 < kxk and kxk 6= 2, then Tx = 2x= kxk.

Therefore, it follows that

Tx� T 2y

2 + 

T 2x� T 2y

2 � 2

x� T 2y

2
= kTxk2 � 2 kxk2

< 4� 2�
�p
2
�2
= 0:

This implies that (4.3) is satis�ed. From the above, the mapping de�ned by (4.4)
satis�es (4.3) as claimed. �
Finally, note that the mappings addressed in this article are not necessarily quasi-

nonexpansive even if they have a �xed point, as illustrated by Examples 1 and 2.
Therefore, convergence theorems for �nding �xed points are di¢ cult to prove along
the elements of the previous studies cited in this article.
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