FIXED POINT THEOREM FOR GENERIC 2-GENERALIZD
HYBRID MAPPINGS IN HILBERT SPACES

ATSUMASA KONDO

ABSTRACT. We establish a fixed point theorem for a class of mappings called
generic 2-generalized hybrid mappings in the setting of a real Hilbert space.
Two examples of that class of mappings are presented herein. The mappings
are not quasi-nonexpansive even though they have fixed points. One of the
mappings is not continuous. The fixed point theorem proved in this article
improves many previous works in the literature.

1. INTRODUCTION

Let E be a Banach space with a norm ||-||. For a mapping T : C — E, the set of
fixed points is denoted as

FT)={xeC:Tx=ux},

where C' is a nonempty subset of E. The Schauder fixed point theorem [21] asserts
that any continuous mapping defined on a compact and convex set has a fixed point.
A mapping T : C' — FE is called nonezxpansive if

[Tz —Ty|| < |lz —y[| forall z,y € C.

Obviously, a nonexpansive mapping is continuous. Under the setting of a reflex-
ive Banach space, Kirk [12] proved the existence of fixed points for nonexpansive
mappings by supposing that C' is weakly compact and has “normal structure”; for
related results, see also Browder [3] and Gohde [4]. It is known that a nonempty,
closed, and convex subset of a Hilbert space has the normal structure (see Prob-
lem 4.4.2 in Takahashi [22]). Therefore, the following theorem is derived from the
Browder-Gohde-Kirk’s fixed point theorems:

Theorem 1.1. Let C be a nonempty, closed, convex, and bounded subset of a real
Hilbert space H. Let T be a nonexpansive mapping from C into itself. Then, F (T)
18 nonempty.

In the following part of this article, we use H to denote a real Hilbert space
with an inner product (-, -) and the induced norm |-||. Theorem 1.1 is extended in
various directions. The conditions required for a mapping are relaxed to uniformly
include many important types of mappings. Kocourek et al, in their work in
2010 [13], proposed a broad class of mappings: A mapping T : C — H is called
generalized hybrid if there exist a, § € R such that

a|Te = Ty|* + (1 —a) |z = Tyl|* < BTz -yl + (1 - B) |z - y||”
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for all z,y € C, where R is the set of real numbers. This is also known as («, §)-
generalized hybrid mappings. A (1,0)-generalized hybrid mapping is nonexpansive,
and a nonexpansive mapping is a special case of the generalized hybrid mappings.
Similarly, a (2, 1)-generalized hybrid mapping is nonspreading [14, 15], and a (2, 1)-
generalized hybrid mapping is hybrid [23]. Nonspreading mappings are deduced
from optimization problems. Igarashi et al. [6] illustrated that a nonspreading
mapping is not necessarily continuous. Hence, a generalized hybrid mapping is not
necessarily continuous. Kocourek et al. [13] proved a fixed point theorem and weak
convergence theorems for finding fixed points of generalized hybrid mappings.
A mapping T : C' — C'is called 2-generalized hybrid [18] if there exist a, aa, 31, 85 €

R such that

o1 | T%2 = Ty||* + az | T — Tyl* + (1 — a1 — as) ||z — Ty|’
< B, || 1% — y||” + B, 1Tz — yl> + (1 — B, — B) ||z — yl?

for all x,y € C. The class of 2-generalized hybrid mappings contains generalized
hybrid mappings as a special case of a; = §; = 0. Hojo et al. [5] provided examples
of 2-generalized hybrid mappings that are not generalized hybrid. Maruyama et al.
[18] proved a fixed point theorem for this type of mappings in Hilbert spaces; see
also Alizadeh and Moradlou [1, 2] and Rouhani [19]. Many researchers have studied
approximation methods for finding fixed points of 2-generalized hybrid mappings;
see, for instance, [1, 2, 5, 18, 19, 20]. A mapping T : C' — H that has a fixed point
is quasi-nonexpansive if

1Tz —u|| < ||xr—ul forallz e C andue F(T).

A 2-generalized hybrid mapping with a fixed point is quasi-nonexpansive, which was
demonstrated by Maruyama et al. [18]. The previous studies cited here utilized
the fact that the mappings are quasi-nonexpansive to prove convergence theorems
for finding fixed points.

Recently, Kondo and Takahashi [16, 17] introduced a more general class of map-
pings than the 2-generalized hybrid mappings. A mapping T : C — C is called
generic 2-generalized hybrid if there exist o, 5;,7; € R (4,5 = 0,1,2) such that

(1.1) agollz — ylI* + coillz — Tyl|* + cozllz — T?y|1?
tago ITz — y|? + any [Tz — Ty|® + ans | Tz — T2
taso |72 — y||” + ao | T2 — Ty|| + an |77 — Ty
+Bo & = Tx|)* + B, || Tz — T2a||* + 8, | T2 — 2|
0 ly = Tyll* + 71 | Ty — T2y||* + 72 | T2y —y||* < 0

for all x,y € C. They assumed certain parameter conditions on the mapping.
Under the conditions, the mapping becomes quasi-nonexpansive if it has a fixed
point. Kondo and Takahashi proved various types of convergence theorems that
approximate fixed points by using the fact that the mapping is quasi-nonexpansive.
In addition to the convergence theorems, they also proved the existence of fixed
points for generic 2-generalized hybrid mappings. However, the conditions imposed
on the parameters o, §;, v, (€ R) were still restrictive. For fixed point theorems for
another class of mappings in Hilbert spaces, see Takahashi et al. [24], Kawasaki and
Takahashi [11], and Kawasaki and Kobayashi [10], whereas for recent contributions
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to fixed point theorems in settings of Banach spaces, see Kawasaki [7, 8, 9] and
articles cited therein.

In this article, we establish a fixed point theorem for generic 2-generalized hybrid
mappings under relaxed conditions on the parameters «;j, 3;,7; (€ R) than in the
previous works by Kondo and Takahashi [16, 17]. Our theorem includes cases such
as

(1.2) M Tz = Tyl + (1= N [|T% = %)) < |lz -y
(1.3) pllTz —y[” + (1= ) | T — y|” < llz -yl
(1.4) v|Tx = Tyl* + (1 - v) | 7% — Ty||* < |lz - Tyll*;
(1.5) ¢ HTJ: — T2y||2 +(1-¢ HTQx — TQyH2 < Hx — TQyH2 ;

for all z,y € C, where A\, u,v,& € (0,1]. These types of mappings are generic
2-generalized hybrid. For example, if agg = —1, az1 = A, ase = 1 — A, and the
other parameters are all 0 in (1.1), the condition (1.2) is obtained. The parame-
ter combinations in (1.2)—(1.5) were not addressed in the previous works [16, 17].
Moreover, a mapping with any of the conditions (1.2)—(1.5) is not necessarily quasi-
nonexpansive even if it has a fixed point. In Section 2, the main theorem is proved.
The theorem extends many existing results, and it simultaneously guarantees the
existence of fixed points in mappings characterized by the conditions (1.2)—(1.5).
Some remarks concerning the main theorem are given in Section 3. In Section 4,
examples for which we address in this article, but are not in previous studies are
presented. One of these examples is not continuous, although it satisfies (1.5).

2. MAIN RESULT

This section presents the main theorem of this article. Although the previous
work by Kondo and Takahashi [16] addressed the fixed point problem for («a;;, 8;, ;3
i,7 = 0,1,2)-generic 2-generalized hybrid mappings, we relax conditions on the
parameters (oj,5;,7;; ,J = 0,1,2) to prove a fixed point theorem. First, we
prepare the following lemma. Although part (1) of Lemma 2.1 was proved by
Kondo and Takahashi [16], we reproduce the proof for completeness. As part (2) is
necessary to further extend Theorem 2.1, we prepare it herein.

Lemma 2.1. (1) Let o, € R such that o« + 8 > 0, and let {a,} and {b,} be
sequences of monnegative real numbers such that a, — b, — 0. Then, it holds that
liminf, o (@a, + Bb,) > 0.

(2) Let a, 3,7 € R such that a + 8+~ > 0, and let {a,}, {bn}, and {c,} be
sequences of monnegative real numbers such that a, — b, — 0, b, — ¢, — 0, and
¢n — ap, — 0. Then, it holds that liminf, _, o (aa, + Bb, + vc,) > 0.

Proof. (1) If @« = 8 =0, the desired result follows. Assume, without loss of gener-
ality, that a > 0. We prove that

Ve > 0, dng € N such that n > ng = aa, + 6b, > —¢,

where N is the set of positive integers. Let ¢ > 0. As a,, — b, — 0, we have that
for a positive real number /o > 0,

(2.1) EnOGNsuchthatnznoﬁbnfE<an<<bn+£>.
o o
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Let n > ng. Using @ > 0, a+ 8 > 0, and b, > 0, we obtain from (2.1) that
€

aa, + Bb, > « <bn — E) + Bb,

=(a+p0)b, —e> —¢.
This ends the proof for (1).
(2) If a + 8 = v = 0, then the desired result follows from (1). The rest of the

proof is divided into two cases: (i) a + 8 > 0, and (ii) v > 0. Our aim is to show
that
(2.2) Ve > 0, dng € N such that n > ng = aa, + 06b, + y¢, > —¢.
(i) First, assume that a+ 3 > 0, and assume, without loss of generality, that « > 0.
As a,, — b, — 0 and « > 0, it holds that
(2.3) ElnleNsuchthathn1:>bn—i<an <<bn+i).
2x 2x
As b, — ¢, — 0 and o+ 3 > 0, we have that

€ €
24) 3 h that n > Y — ————— < b, y+— .
(2.4) no € N suc at n>ny =—c¢ 2(a+6)< <<c +2(a+ﬁ)>

Define ng = max{ni, na} € N, and let n > ng. Then, as « > 0, a + 8 > 0,
a+ [ +7v>0,and ¢, > 0, we obtain from (2.3) and (2.4) that

aay + Bb, + e,

>a(bn—%)+ﬁbn+vcn
:(a‘f'ﬁ)bn—%'i"ch

g g
> @) (- gg) <5t

=(a+8+7)c, —e> —¢.

Therefore, (2.2) holds.

(ii) Next, assume that v > 0. If « + 3 = 0, then it holds from (1) that
liminf, o (@a, + Bb,) > 0. Using v > 0 and ¢, > 0, we have the desired re-
sult (2.2) as follows:

lim inf (aa,, + Bb, + vcy)

> liminf (aa,, + Bby,) + liminfye,
n—oo n—oo

> lim infv¢,, > 0.

Hence, we can assume that a+ 3 < 0. It follows from b,, —¢,, — 0 and ¢,, —a, — 0
that

B
2.5 n b, — cp, 0.
(2.5) P L ey Cn —
Let € > 0, and define d,, = ﬁan + aiwbn € R. The expression (2.5) means that

¢n — dy, — 0. It follows that for a positive real number €/2v > 0,

(2.6) dng € N such that n > ng = d,, — 2i < cp << dn + 6) .
v 2y
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Sincea+8+~v >0, ¢, —d, — 0, and ¢, > 0, we obtain

(2.7) dng € N such thatn2n4:>(a—l—ﬁ+y)dn>—g.

Define ny = max {ns, ns} € N, and let n > ny. Then, as v > 0, we obtain from
(2.6) and (2.7) that

aay, + Bb, + e,

= (a+ﬁ) (aiﬂa7l+aiﬂbn> +’YCn

:(a"’ﬁ)dn'i"ycn

g
>(a+ﬁ)dn+7<dn_27>

:(a+ﬁ+’y)dn—%>—5.

This completes the proof. O

For an (aj,08;,7:; 4,7 = 0,1,2)-generic 2-generalized hybrid mapping, we use
the following notations:

(2.8) Qie = Qo + 041 + (2,  Qej = Qs + 13 + g, and
Nee = § Qij,
§§=0,1,2

where i = 0,1,2. We denote by z,, — = a weak convergence of a sequence {z,} in
H to a point x (€ H). For a mapping T : C' — C, define

(2.9) F'(T)={zeC:Te =T},

where C' is a nonempty subset of H. It is obvious that € F~1(T) is equivalent
with Ta € F (T'). The main theorem of this article is as follows:

Theorem 2.1. Let C' be a nonempty, closed, and convexr subset of H, and let
T:C — C be an (ai5,8;,7: 4,7 = 0,1,2)-generic 2-generalized hybrid mapping.
Suppose that there exists an element z € C' such that the sequence {T"z} in C is
bounded. Consider the following conditions:

(13) [07%% 20, alo‘i‘ﬁo >0; ﬁl 207 a2o+ﬁ2 207 ’70+71 207 Y2 207
1b) Qee > 0, 041.+60 >0, 51 >0, 042.4‘52 > 0, Yo+ 71 2 0, v9 = 05
lc) cee >0, a1e + By > 0, B >0, aze + 2 >0, 75 +7; > 0, 75 > 0;
23) Qoo 2 Oa 0401+’YO > 07 71 Z O; 0402"’72 Z O; /80+/81 Z Oa /62 ZO,
Qb) Oee 207 (0731 +70 207 71 207 a02+72 > Oa ﬁ[)—’_ﬁl 2 0, 62 Z 07
2

If (1a) or (2a) is satisfied, then F (T') is nonempty. If (1b) or (2b) is satisfied,
then F (T?) is nonempty. If (1c) or (2c) is satisfied, then F~*(T) is nonempty,
where F~1(T) is defined in (2.9). Furthermore, T has at most one fized point if
(oo > 0.

Proof. Case (1abc). Suppose that cee > 0, 7o+ 71 > 0, and 75 > 0. Define

171—1
Spz = EkZ_OTkZ
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for each n € N. Then, {S,2} is a sequence in C since C is convex. As {T"z}
is bounded, so is {S,z}. There exist a subsequence {Sy,z} of {S,z} and v € H
such that S,,z — v. Note that since C is closed and convex, it is weakly closed.
Since {S,,z} is a sequence in C, S,z — v, and C is weakly closed, it holds that
v € C. Therefore, Tv and T?v (€ C) exist. As T is (i, 8,75 4,7 = 0,1, 2)-generic
2-generalized hybrid, we have from (1.1) that

aoollv — T*2|2 + aor |[v — T*2||* + ags [|o — T2z
tan ||[To = TF2|* + an || T — T2 + ang || Tw — T2
s || T20 = TF2))% + sy | T%0 — THH2|* + s || T20 — THF22
+Bo llv = To|® + By | Tv — T?0||” + 6, | T%0 — o|°
v | T2 = T2 oy | TE 2 = TR522 P 4, | THF22 = T2 <0

I

for all & € NU{0}. As vy, > 0, subtracting ~, | T""22 —TI‘ZZH2 (> 0) from the
left-hand side, we have that

ago [|lo = T%2||” + ao1 [[v = T*2||* + ags [|o = T2
+ao (T = vll* +2(Tw v, v = T*2) + o — T2||")
oy (ITv = o) +2(Tv v, v =TH12) + o - TH12]")
tany (ITv = o] +2(Tv — v, 0 = TH22) + |[o - T2 ")
taz (|72 = ol +2(T% — v, v=T"2) + [l - T2|*)
tan (|72 = of* +2(T% — v, v = T12) + [lo - TH12])
tazs (|72 = of* +2(T% — v, v = T22) + [Jo - TH2] )
+84 v = Tolf? + 8, |Tv — T20|)* + B, || T2 — |
o [Tz = T 2|7 4, | T2 = T2 <0,

From this, the following holds:

Qe Hv — T’“zH2 + Qo1 Hv — Tk+1zH2 + (o2 ||v — T]’H'2,z||2
+2a1g <TU —v, v— Tkz> + 2011 <Tv —v, v — Tk+1z>
+2a19 <Tv —v, v— Tk+22>
+2a99 <T21) —v, v— Tkz> + 2091 <T2v —v, Vv — Tk'+1z>
+2a99 <T2U —v, v — Tk+2,z>
(e + B0) [T = l* 4 By [|To = T20[|* + (020 + 8) [|T%0 — o
90 | T2 = THH2|)” 4 4y | T2 = T5422 ) <.
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This yields that
oo [0 =T * ey ([l =T~ [Jo = ")
taw ([Jo - 742~ ||o - 7%2)
+2(Tv — v, a1ev — 10T 2 — an TF 2 — a1 TF22)
+2(T%0 — v, aze — a20T*2 — a1 T"™ 2 — aoTFH22)
+ (@10 + Bo) |Tv = 0> + B, | Tv = T?0||* + (a0 + B) | T%0 — v|)*
o [Tz = T2|” 4y | T2 = T2 <0,
Since e > 0, subtracting aea |[v — T%z||* (> 0) from the left-hand side yields
(210) awr (fJo = 752" = flo = T%2[|") + ez (JJlo = T2 = [Jo = T42]")
+2(Tv — v, arev — {a1eT* 2 + ary (TF 2 = TF2) + aqp (TH22 — T2) })
+2(T%0 — v, azev — {@2aTF2 + oy (TF2 — T"2) + ago (TH22 — T%2) })
+ (10 + Bo) I Tw — vl|* + By | Tv — T20||* + (a2 + ) | T2 — o|”
o |52 = T2|* 4y | T2 = T2 < 0.

Take n € N and fix it momentarily. Summing the inequalities in (2.10) with respect
to k from 0 to n — 1, and dividing by n, we have

(2.11) %a.l (lo =720 = Jlo - 2I°)
+raws ([lo = T o flo = T ~ o = T2l ~ o — 2]
+2(Tv — v, a1ev — {Q1eSnz + %au (T"z — 2)
+%a12 (T" 2+ T2 —Tz—2)})
+2(T?v — v, oe¥ — {208, 2 + %agl (T"z — 2)
+%a22 (T" 2 +T"2 — Tz —2)})
(a1 + Bo) [0 = ol* 4 B [|T0 = T2 + (a2e + 5) |70 — o
n—1 n—1

o 30 (T4 = TPy - 3 [T - T <0
k=0 k=0

Since {T"z} is bounded, it holds that
n—1 n—1
S S ST e PP
k=0 k=0

Since 7y, 4+ v > 0, we have from Lemma 2.1-(1) that

n—1 n—1
lim inf (70711 Z HTkz — Tk+1z|‘2 + 71% Z HT’“'HZ — Tk+22H2> > 0.
k=0 k=0

n— o0
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Replacing n with n;, and taking the liminf as ¢ — oo in (2.11), we obtain
2016 (TV — v, U — ) + 2024 <T2v —v, v— v>
2 2
+ (a1e + By) | Tv — v||2 + 0 ||Tv — T2v|| + (e + B5) ||T2v — UH <0.
Therefore,
2 2 2 2 2
(212) (e + Bo) [ Tv = v|* + By [|[Tv — T?v||” + (az2e + By) | T?0 — v||” < 0.

(a) Assume that aje + 8y > 0, 87 > 0, and age + By > 0. Since §; > 0 and
2e + B4 > 0, subtracting

2 2
ﬂl HTU - T2UH + (CY2. + 62) HTQU — ’UH (Z O)
from the left-hand side of (2.12) yields
(alo + 60) ||TU — UH2 S O

Dividing by a1e + 3, (> 0), we obtain |[Tv —v||> < 0. This means that Tv =
v. Therefore, F (T) is nonempty. (b) Assume that aje + 5, > 0, §; > 0, and
i2e + 5 > 0. Since aje + 5, > 0 and B, > 0, we have from (2.12) that

(a2e + By) [|[T?0 — UHQ <0.

Since age + B9 > 0, it holds that F (T2) # (. (c¢) Similarly, if aje + 3, > 0, 3; > 0,
and e + By > 0, then Tw = T?v. This means that F~1 (T) # (. This completes
the proof for Case (labc).

Case (2abc). In much the same way as the proof for Case (labc), we can obtain
the desired result.

Finally, we prove the uniqueness of a fixed point of 7. Assume that aee > 0.
Let w,v € F(T). As T is a (a5, 08,,74; ©,J = 0,1, 2)-generic 2-generalized hybrid
mapping, we have from (1.1) that

ago [[u — v]|* + aor [[u — To||* + ans [|u— TzUH2
+ao [Tu—o|* + an | Tu — To|)? + a1z || Tu — T2
+ag HT2u — UH2 + a9y HT2u — TUH2 + g HT2u — T2v||2
+B80 llu — Tul)* + By ||Tu — T?u||” + B, | T?u — u*
70 llv = To)* + v || T - T%H2 + 7, || TP — vH2 <0.
Since u,v € F(T) C F (T?), it holds that u = Tu = T?u and v = Tv = T?v.

Thus, we obtain qee ||t — 11||2 < 0. Since aee > 0 is assumed, we obtain © = v. The
proof is completed. O

3. REMARKS

In this section, some remarks are given concerning Theorem 2.1 established in
the previous section. Let T be a mapping from C' into itself, where C' is a nonempty
subset of H. First, by analogy from (2.9), define

(3.1) FY1) = {zeC: T'x = T”lx}
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where [ € N. Obviously, x € F~!(T) is equivalent to T'z € F (T). It is easy to
verify that

(3.2) F(T)=n2,F(TY c F Y (T)C F2(T)c F*(T)C - and

(3.3) F(T?) =2, F(T).

Thus, if (1a) or (2a) in Theorem 2.1 is satisfied, it follows from (3.2) that
(N2 F(TY) N (N2 FH(T)) # 0

since F' (T') is nonempty in such cases. Similarly, if (1b) or (2b) is satisfied, then
we have from (3.3) that N°, F (T%) # 0. If (1c) or (2c) is satisfied, then it holds
from (3.2) that N, F~! (T) # (. We have obtained the following corollary:

Corollary 3.1. Let C be a nonempty, closed, and convexr subset of H, and let
T:C — C be an (aij, 8,74 1, = 0,1,2)-generic 2-generalized hybrid mapping.
Suppose that there exists an element z € C such that the sequence {T™z} in C
is bounded. Consider the conditions (1a)—(2c¢) in Theorem 2.1. If (1a) or (2a) is
satisfied, then ( 2 F (Tl)) N (ﬂf;lF’l (T)) is nonempty, where F~'(T) is defined
n (3.1). If (1b) or (2b) is satisfied, then N2, F (T?) is nonempty. If (1c) or (2c)
is satisfied, then N2, F~(T) is nonempty.

Second, Theorem 2.1 can be generalized to the case of a generic L-generalized
hybrid mapping, where L € N. Although we have proved Theorem 2.1 by using
Lemma 2.1-(1), the theorem with the case of a generic 3-generalized hybrid mapping
can be proved by using Lemma 2.1-(2).

Third, we compare Theorem 2.1 with the previous result in Kondo and Takahashi
[16]:

Theorem 3.1 ([16]). Let C' be a nonempty, closed, and convex subset of H, and
letT:C — C be an (ay;, 5;,7;; 1,5 = 0,1,2)-generic 2-generalized hybrid mapping.
Suppose that T satisfies one of the following conditions:

(1A) Qpe +a10 Z 0, Ooe Z 0; O1e +ﬁo > 07 ﬁl?BQ 2 07 'YQ +71 2 07 72 2 0;

(2A) o0 + te1 > 0, a2 >0, o1 +79 >0, 71,72 20, By + 51 >0, B3 > 0.

If there exists an element x € C such that the sequence {T"z} in C is bounded,
then F (T') is nonempty. Furthermore, a generic 2-generalized hybrid mapping T
has at most one fixed point if aee > 0.

In the statement of Theorem 3.1, the notations e, (te;, and «ee are defined
in (2.8). It is apparent that (1A) (resp. (2A)) in Theorem 3.1 is more restrictive
than (1la) (resp. (2a)) in Theorem 2.1. The condition (1A) requires age + 16 > 0
and awge > 0, whereas the corresponding part of (1a) is ee > 0. According to [16],
under the condition (1A) or (2A), T is quasi-nonexpansive if it has a fixed point,
whereas under the condition (la) or (2a), that is not guaranteed. To illustrate the
difference, consider cases (i)—(iv) that satisfy the condition (la) and (2a), but do
not satisfy (1A) nor (2A).

Let T be an (ayj, B8;,7v;; 4, = 0, 1,2)-generic 2-generalized hybrid mapping that
is characterized by (1.1). (i) Substituting cgg = —1, ag1 = A, ags = 1 — A, and the
other parameters all equal to 0 into (1.1), we obtain

(34) ATz —Ty|* + (1 =N ||T%2 — T%||* < ||z —y||* for all 2,y € C,
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where A € (0,1]. (ii) Letting ago = —1, @10 = i, agg = 1 — p, and the other
parameters all equal to 0, we have that

(35)  plTz -yl + Q- w7 —y|" <z —y|* forallayed,

where p € (0,1]. (iii) Letting ago = —1, a19 = v, agg = 1 — v, and the other
parameters all equal to 0, we have that

(3.6) v Tz —Ty|* + (1 -v) | T2 — TyH2 < |z =Tyl for all 2,y € C,

where v € (0,1]. (iv) Letting ago = —1, a0 = &, agg = 1 — &, and the other
parameters all equal to 0, we have that

B7) & Te =T + (1= &) |T% — T2y|* < ||« = T%y||° forall 2,y € C,

where £ € (0, 1]. The parameter combinations satisfy (1a) and (2a) in Theorem 2.1,
but do not satisfy (1A) nor (2A) in Theorem 3.1. In the next section, we present
examples of mappings, each of which satisfies (3.4) or (3.7).

Although a mapping that satisfies either of the conditions (3.4)—(3.7) is a special
case of the generic 2-generalized hybrid mapping that is addressed in Theorem
2.1, we present a proof of a fixed point theorem concerning a general version of a
mapping characterized by (3.4) as an exercise, because the conditions in Theorem
2.1 seem to be a bit complicated.

Theorem 3.2. Let C' be a nonempty, closed, and convex subset of H. Let L € N,
and let A1,--+, A € [0,1] that satisfies ZzL:1 A = 1. Let T be a mapping from C
into itself such that

L
(3.8) S x| T =Ty < o —y))”
=1

for all x,y € C. Suppose that there exists an element z € C such that {T"z} is a
bounded sequence in C. If \; > 0, then F (Tl) is nonempty, wherel =1,---, L.

Proof. For brevity, we present a proof for the case of L = 3. Define

n—1

1 1
S0 ———51’“, st ——751’“,
n? n e ‘ T — ?

k=1
1 n+1 1 n+2

S22 = ﬁZTkz, S22 = ﬁZTkZ'
k=2 k=3

As C is convex, {S0z}, {Stz}, {S2z}, and {S22} are sequences in C. As {T"z}
is bounded, so is {S9z}. Hence, there exists a subsequence {S9 z} of {59z} such
that S z — v for some v € H. As C' is closed and convex, it is weakly closed. As

{89 2} € C and S z — v, we have v € C. Hence, T'v (€ C) exists for [ =1,
L.

Next, observe that
(3.9) Spz—wv, S2z—wv, S2z—w

as ¢ — 0o. It can be verified as follows: First, note that

(3.10) S0 —Sly—0, 8% —-8%2—-0, S%—-S3:—0.
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Indeed, it holds that
n+2

171—1 . 1 .
EZT Z_EZT’Z
k=0 k=3

= % Hz 4 Tz+T?—Trz—TnH - T”+22H .

|Shz — Siz||

As {T"z} is bounded, we obtain S0z — S22 — 0. Similarly, the other parts of (3.10)
can be demonstrated. As S5 z — v, we have from (3.10) that S} z — v, S3 z — v,
and S3 z — v as claimed.

From (3.8) with L = 3, it holds that

M [ TRz = To||” 4 A |52 = T20||” 4+ Ag || T3z — T3 < ||T%2 — o]
for all k£ € NU {0}. This yields
A1 <||Tk+1z - vH2 +2(T"z —v, v—Tov) + v — T’UH2>
Ay <||T’“+22 - UH2 +2(T" 2z —v, v = T?) + |lv - T2u||2>
+A3 (HT’H'SZ — vH2 + 2 <Tk+3z —v, v— T3v> + Hv — T%Hz)
<||T*s— .
As A1 + Ao + A3 = 1, it follows that
A1 (HTkHz - vH2 - ||Tkz — v||2> + At |l = To|?
g (|IT5422 = of|* = |72 = o]|*) + 2|0 - T2
2 (74422 = o|* = 7% = o]*) + xg [Jo = T2
+2\1 <Tk+1z —v, v— Tv> + 2o <Tk+22 —v, v— T2v>
+2)\3 <Tk+3z —v, Vv — T3v> <0.

Let n € N. Summing these expressions with respect to & = 0,1,---, n — 1 and
dividing by n, we obtain

A
2 (I = ol = 1z = o)
A
+22 ([l 1z = ofP 1Tz = ol = 1Tz = ol = |1z~ o)
20 s o o
— |72z = of* = 172 = 0l — |z = o]]*)
A1 flv = Tol|> + Az v — T2vH2 + A3 |jv - Tgsz
+2\1 <S,1Lz —v, v— Tfu> + 22 <S,2Lz —v, v— T2v>
+2)3 <Sf;z —v, v— T3U> <0.

Note that {T™z} is bounded. Replacing n by n;, and taking the limit as i — oo,
we have from (3.9) that

(3.11) Al = To|* + Az [[v = T20||* + Az |Jo — T%0|* < 0.
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Assume that Ay > 0. As A\, A3 > 0, subtracting
Ao [|o = T20|” + Ag |[o — T0||* (> 0)
from the left-hand side of (3.11) yields
M o =Tl < 0.

Dividing by A; (> 0), we obtain ||v —Tv|*> < 0. This means v = Tv. Thus,
F(T) # 0. Similarly, if \; > 0, then F (T") # 0 for | = 2,3. This completes the
proof. O

Theorem 3.2 with L = 2 corresponds to (3.4), whereas it includes Theorem 1.1
as a special case of L = 1.

4. EXAMPLES

This section presents examples of generic 2-generalized hybrid mappings to il-
lustrate the difference of parameter conditions between those in Theorem 2.1 and
Theorem 3.1. Theorem 2.1 is the main result of this article, whereas Theorem 3.1
is in a previous work by Kondo and Takahashi [16]. Mappings characterized by
the conditions (3.4)—(3.7) are appropriate for that aim. We present two examples.
First, letting A = 1/2 in (3.4) yields

(4.1) T2 — Ty|* + | T2 — T?y||* < 2|x — y||* forall 2,y € C.
The following mapping satisfies (4.1).

Example 1. We consider the case of H = C' = R. Mapping T : R —» R is
defined as follows:

0 if x >0,
(4.2) Tw = { 2z ifz<0.

It is easily ascertained that T is not quasi-nonexpansive, although it has a fixed
point 0 (€ R). Therefore, T is not in the class of mappings addressed in previous
studies cited in this article.

We verify that the function T' defined by (4.2) satisfies the condition (4.1). Let
v,y € R. (1) If o,y > 0, then To = Ty = T?r = T?y = 0. Thus, the condition
(4.1) is met. (i) If z,y < 0, then it holds that Tz = —v/2x, Ty = —/2y, and
T2z = T?y = 0. Therefore, it follows that

2
T2 = Ty|* +||T%x = T%y||” = 2]« — y|”
2
= (—\/ia:—i—\[?y) —2(x—-y?=0.

This indicates that the condition (4.1) is satisfied. (iii) If x > 0 and y < 0, then
Ty = —/2y and Tx = T?xz = T?y = 0. Thus, it holds that

T2 = Ty|* + || 7% — T%y|* - 2|} — y|?
= Tyl - 2llz — y]?

=2° —2(z —y)*

= —2z(r —2y) <0.

Thus, the condition (4.1) follows. From the above, the mapping defined by (4.2)
satisfies (4.1) as claimed. O
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Next, we present an example that satisfies (3.7). Letting £ = 1/2 in (3.7), we
have

(4.3) Tz — T2y|) + || T2 — T%y||” < 2|z — T%y||” for all 2,y € C.

Although the mapping in Example 1 also satisfies (4.3), we present another example
that is not continuous. The mapping in Example 2 is a variant of those in Igarashi
et al. [6] or Hojo et al. [5].

Example 2. Let H be a Hilbert space, and set C' = H. Define a nonlinear

mapping T : H — H as follows:

w o { B VIS la] and o] £2

0 if ||z <V2or |z]| =2.

It is easy to verify that T is not quasi-nonexpansive, although it has a fixed point
0(c H).

We show that the mapping T defined by (4.4) satisfies the condition (4.3). Let
x,y € C = H. It can be immediately recognized that T2z = T?y = 0. We consider
two cases according to ||z||. (i) If ||z|| < v/2 or ||z|| = 2, then Tz = 0. Thus, the
condition (4.3) is satisfied. (ii) If V2 < ||z| and |z| # 2, then Tx = 2z/|z|.
Therefore, it follows that

e e T e
= ITall* — 2]la|?

<4—2x(\@>2:0.

This implies that (4.3) is satisfied. From the above, the mapping defined by (4.4)
satisfies (4.3) as claimed. O

Finally, note that the mappings addressed in this article are not necessarily quasi-
nonexpansive even if they have a fixed point, as illustrated by Examples 1 and 2.
Therefore, convergence theorems for finding fixed points are difficult to prove along
the elements of the previous studies cited in this article.
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