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Abstract

The global financial crisis leads to a growing awareness of the
need for robust dynamic investment control. This study considers
a consumption–investment problem for an investor with homothetic
robust utility under a quadratic security market model, in which all
inflation rates, interest rates, and asset risk premiums and volatilities
are stochastic and predictable. Homothetic robust utility is character-
ized by investors’ relative risk aversion and “relative ambiguity aver-
sion.” We show that the optimal portfolio is decomposed into the sum
of myopic demand, intertemporal risk hedging demand, inflation risk
demand, and “intertemporal ambiguity hedging demand.” We obtain
a loglinear approximate analytical solution to a nonlinear partial dif-
ferential equation for the indirect utility function. The coefficients for
this solution are provided as a system of nonlinear algebraic equations.
We also present an algorithm to solve this system numerically.

JEL classification: C61, G11
Keywords: Homothetic robust utility, Approximate analytical solution,
Consumption–Investment problem, Stochastic interest rate, Stochastic
volatility, Inflation.

1 Introduction

The global financial crisis, which resulted in significant losses for investors,
has raised an awareness of the need for robust dynamic investment control

∗kusuda@biwako.shiga-u.ac.jp
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accounting for the Knightian uncertainty, under which the assumed proba-
bility itself cannot be specified, in addressing the investment problem. The
robust utility is proposed by Hansen and Sargent [20] and studied by An-
derson, Hansen, and Sargent [2] and Hansen, Sargent, Turmuhambetova,
and Williams [21]. However, the robust utility does not have homotheticity,
which is a desirable property of the utility function—one that constant rel-
ative risk aversion (CRRA) utility has. Maenhout [28] modifies the robust
utility so that it has homotheticity, obtaining the homothetic robust (HR)
utility. Subsequently, the HR utility is applied to a wide range of financial
problems, including Uppal and Wang [36], Marquering and Verbeek [30],
Liu, Pang, and Wang [27], and Yi, Viens, Law, and Li [39]. We consider the
dynamic consumption–investment control problem for an investor with the
HR utility.

In addressing the consumption–investment problem, it is crucial to set
up a realistic security market model that captures actual asset price fluctu-
ations. Many previous studies show that inflation rates, interest rates, and
asset risk premiums and volatilities are stochastic and predictable,1 which
are now considered stylized facts. Hence, it is necessary to incorporate the
stylized facts into our security market model. For this purpose, we model
the stylized facts based on the state vector process. This approach makes
the investment opportunity set stochastic due to the variation in the state
vector as in Merton [31]. In the framework of Merton [31], the dynamic
consumption–investment problem is attributed to the problem of solving
the second-order partial differential equation (PDE), which is derived from
the Hamilton–Jacobi–Bellman (HJB) equation for the indirect utility func-
tion. In the standard CRRA utility setting, the PDE is a nonhomogeneous
linear equation, and it is solvable in a semi-analytical form, as shown by
Batbold, Kikuchi and Kusuda [5]. However, for the HR utility setting, not
only the nonhomogeneous term but also a nonlinear term appear in the
PDE, resulting in the difficulty of finding an exact solution. This study thus
aims to derive an approximate analytical solution for the robust dynamic
consumption–investment control problem under a security market model
while accounting for all stylized facts.

With respect to such a security market model, we focus on the class of
quadratic security market models independently developed by Ahn, Dittmar
and Gallant [1] and Leippold and Wu [25], because they can capture all
the above-mentioned stylized facts in security markets and are analytically
tractable. These models are used in security pricing studies such as Chen,

1It is evident that interest rates are stochastic and mean-reverting. Campbell [9],
Campbell and Shiller [12], Fama and French [18], Poterba and Summers [33], and Ho-
drick [22] posit that the risk premiums of stocks are stochastic and mean-reverting, while
Bollerslev, Chou, and Kroner [6], Campbell, Lo, and MacKinlay [11], and Campbell, Let-
tau, Malkiel, and Xu [10] show that the return volatilities of stocks are stochastic and
mean-reverting.
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Filipović, and Poor [16], Kim and Singleton [24], and Filipović, Gourier, and
Mancini [19]. In anaylyzing the optimal consumption–investment, Batbold
et al. [5] assume a quadratic security market model, in which all the afore-
mentioned processes are expressed as mean-reverting stochastic processes.
They analyze a dynamic consumption–investment control problem for the
CRRA utility and derive a semi-analytical solution. In their quadratic
model, the state vector process is modeled by the canonical form (Dai and
Singleton [17]) of the multidimensional Ornstein-Uhlenbeck process, and it
is assumed that the instantaneous nominal risk-free rate, instantaneous divi-
dend rate, and instantaneous expected inflation rate are quadratic functions
of the state vector and that the market price of risk and inflation volatil-
ity are affine functions of the state vector. This model also assumes that
the instantaneous nominal risk-free security, default-free bonds, default-free
inflation-indexed bonds, and non-bond indices are traded. Note that since
the inflation rate is assumed to be stochastic, security markets would be
incomplete if default-free inflation-indexed bonds were not traded. We also
note that risk-free securities are default-free inflation-indexed bonds for long-
term investors, as emphasized by Campbell and Viceira [14, 15].

Robust dynamic consumption–investment control problems under both
the HR utility and stochastic investment opportunity sets are analyzed in
numerous studies, including Maenhout [29], Liu [26], Branger, Larsen, and
Munk [7], Munk and Rubtsov [32], Yi, Li, Viens, and Zeng [38], and Bat-
bold, Kikuchi, and Kusuda [4]. However, their security market models
ignore some of the above listed stylized facts. Conversely, we analyze a
dynamic robust consumption–investment control problem for an investor
with the HR utility, assuming the quadratic security market model of Bat-
bold et al. [5]. The HR utility is characterized by investors’ relative risk
aversion coefficient and “relative ambiguity aversion coefficient” In the dy-
namic consumption–investment control problem for investors with robust
utility, we determine the worst probability in the first stage and the optimal
consumption–investment control in the second one.

The main results of this study are as follows. First, we obtain the opti-
mal portfolio decomposed into the sum of four terms. The optimal portfolio
decomposed into the sum of three terms, namely, myopic demand, intertem-
poral hedging demand, and inflation risk demand, is shown by Brennan and
Xia [8], Sangvinatsos and Wachter [34], and Batbold et al. [5]. The fourth
term can be considered to represent the demand for insurance against the
ambiguity of the changes in indirect utility due to the changes in the state
process, which is called intertemporal ambiguity hedging demand. To distin-
guish the intertemporal hedging demand from the intertemporal ambiguity
hedging demand, we call the former “intertemporal risk hedging demand”

Second, we show that in the first stage of the worst probability determi-
nation, an investor values a lower price per unit investment risk compared to
the market price of the risk, depending on her/his relative ambiguity aver-
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sion, and in the second stage of consumption–investment decision-making,
she/he values an even lower price per unit investment risk, depending on
her/his relative risk aversion. The optimal investment is thus inversely pro-
portional to the “relative uncertainty aversion,” which is the sum of relative
risk aversion and relative ambiguity aversion.

Third, we apply the method of Campbell and Viceira [15] and Batbold
et al. [4] to the nonhomogeneous and nonlinear PDE for the indirect utility
function and derive an approximate analytical solution. The coefficients for
this solution are provided as a system of nonlinear algebraic equations. We
present an algorithm to derive a numerical solution to the system of nonlin-
ear algebraic equations. The approximate optimal portfolio is decomposed
into the sum of myopic demand, inflation hedging demand, and intertem-
poral uncertainty hedging demand which is the sum of intertemporal risk
hedging demand and intertemporal ambiguity hedging demand. We show
that all types of demand are nonlinear functions of the state vector, because
the inverse matrix of volatilities is its nonlinear function. The fact that the
optimal portfolio is a nonlinear function of the state vector suggests that
achieving the market timing effect is not as simple as rebalancing the port-
folio weight of a single risky security or index based on the business cycle.
Rather, this implies that the market timing effect cannot be achieved with-
out finely rebalancing the portfolio weights among the risky securities in
response to the various phases created by the multidimensional state vector.
The importance of this timing effect is pointed out by Batbold et al. [5] in
the case of the CRRA utility. Because we have access to the approximate
analytical solution for the optimal portfolio, we can implement the afore-
mentioned complex portfolio rebalancing to achieve market timing effects
as long as we can precisely estimate the parameters and the latent factor
process in the quadratic security market model. We can then precisely esti-
mate them using the quasi-maximum likelihood method based on nonlinear
filtering; however, we will develop this in a future study.

The remainder of this paper is organized as follows. In Section 2, we
explain the quadratic security market model and the real budget constraint.
In Section 3, we introduce the investor’s robust consumption–investment
control problem. In Section 4, we derive the PDE for indirect utility. In
Section 5, we derive the approximate analytical solution. In Section 6, we
summarize this study and address future research issues.

2 Quadratic Security Market Model and Real Bud-
get Constraint

We consider frictionless US markets over the time span [0,∞). The investors’
common subjective probability and information structure are modeled by a
complete filtered probability space (Ω,F ,F,P), where F = (Ft)t∈[0,∞) is
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the natural filtration generated by an N -dimensional standard Brownian
motion Bt. We indicate the expectation operator under P with E, and the
conditional expectation operator given Ft with Et.

There are markets for consumption goods and securities at every date
t ∈ [0,∞), and the consumer price index pt is observed. The traded securities
are the instantaneously nominal risk-free security called the money market
account ; a continuum of zero-coupon bonds whose maturity dates are (t, t+
τ∗], each of which has a one USD payoff at maturity; a continuum of zero-
coupon inflation-indexed bonds whose maturity dates are (t, t+ τ∗], each of
which has a pT USD payoff at maturity T ; and J types of non-bond main
indices (stock indices, REIT indices, etc.).2

At every date t, Pt, P
T
t , P T

It, and Sj
t denote the USD prices of the money

market account, zero-coupon bond with maturity date T , zero-coupon inflation-
indexed bond with maturity date T , and j-th index, respectively. Let A′ and
IN denote the transpose of A and the N ×N identity matrix, respectively.

We assume the following quadratic latent factor security market model.

Assumption 1. 1. State vector process Xt satisfies the following SDE:

dXt = −KXt dt+ IN dBt, (2.1)

where K is an N ×N positive lower triangular constant matrix diag-
onalized as

L = Q−1KQ =


l1 0 · · · 0
0 l2 · · · 0
...

...
. . . 0

0 0 · · · lN

 , (2.2)

where l1, l2, · · · , lN > 0.

2. The market price Λt of risk is an affine function of the state vector,
and the instantaneous nominal risk-free rate rt is a quadratic function
of the state vector.

Λt = λ+ ΛXt, (2.3)

rt = ρ0 + ρ′Xt +
1

2
X ′

tRXt, (2.4)

where Λ is such that K + Λ is regular, and R is a positive-definite
symmetric matrix.

2Defaultable bonds can be included into our security market model. In this case, we
would model defaultable bond prices based on the quadratic modeling of intensity by
Chen, Fillipović, and Poor [16] to ensure consistency with our model. However, we do not
consider defaultable bonds to reduce complexity.
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3. The consumer price index pt satisfies

dpt
pt

= it dt+ Λ′
ItdBt, p0 = 1, (2.5)

where it and Λ′
It are given by

it = ι0 + ι′Xt +
1

2
X ′

tIXt, (2.6)

ΛIt = λI + ΛIXt, (2.7)

where I is a positive-definite symmetric matrix such that a matrix R̄
defined by

R̄ = R− I + Λ′
IΛ + Λ′ΛI , (2.8)

is positive-definite.

4. The dividend rate of the j-th index is given by:

Dj
t =

(
δ0j + δ′jXt +

1

2
X ′

t∆jXt

)
exp

(
σ0jt+ σ′

jXt +
1

2
X ′

tΣjXt

)
,

(2.9)
where (δ0j , δj ,∆j) is such that ∆j is a positive definite symmetric ma-
trix and3

δ0j ≥
1

2
δ′j∆

−1
j δj . (2.10)

Note that δ0j + δ′jXt +
1
2X

′
t∆jXt is the instantaneous dividend rate.

5. Markets are complete.

2.1 No-Arbitrage Rate of Return on Securities

We define Λ̄t and r̄t by

Λ̄t = Λt − ΛIt, (2.11)

r̄t = rt − it + Λ′
ItΛt, (2.12)

where Λ̄t is the real market price of risk.
Note that the real market price of risk is an affine function of Xt and r̄t

is a quadratic function of Xt:

Λ̄t = λ̄+ Λ̄Xt, (2.13)

r̄t = ρ̄0 + ρ̄′Xt +
1

2
X ′

tR̄Xt, (2.14)

3Conditions (2.10) ensure that dividend rates are non-negative processes.
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where R̄ is given by eq. (2.8) and

λ̄ = λ− λI , (2.15)

Λ̄ = Λ− ΛI , (2.16)

ρ̄0 = ρ0 − ι0 + λ′
Iλ, (2.17)

ρ̄ = ρ− ι+ Λ′λI + Λ′
Iλ. (2.18)

Let τ = T − t denote the time to maturity of bond P T
t . First, we show

the no-arbitrage rate of return on securities.

Lemma 1. Under Assumption 1, if there is no arbitrage, then the security
return rate processes satisfy the following:

1. The money market account:

dPt

Pt
= rt dt, P0 = 1. (2.19)

2. The default-free bond with time τ to maturity:

dP T
t

P T
t

=
(
rt + (σ(τ) + Σ(τ)Xt)

′Λt

)
dt+(σ(τ)+Σ(τ)Xt)

′ dBt, P T
T = 1,

(2.20)
where

dΣ(τ)

dτ
= Σ(τ)2−(K+Λ)′Σ(τ)−Σ(τ)(K+Λ)−R, Σ(0) = 0, (2.21)

dσ(τ)

dτ
= −(K + Λ− Σ(τ))′σ(τ)− (Σ(τ)λ+ ρ), σ(0) = 0. (2.22)

3. The default-free inflation-indexed bond with time τ to maturity:

dP T
It

P T
It

=

(
rt +

(
σI(τ) + λI + (ΣI(τ) + ΛI)Xt

)′
Λt

)
dt

+
(
σI(τ) + λI + (ΣI(τ) + ΛI)Xt

)′
dBt, P T

IT = pT , (2.23)

where

dΣI(τ)

dτ
= ΣI(τ)

2− (K+Λ̄)′ΣI(τ)−ΣI(τ)(K+Λ̄)−R̄, ΣI(0) = 0,

(2.24)
dσI(τ)

dτ
= −(K + Λ̄− ΣI(τ))

′σI(τ)− (ΣI(τ)λ̄+ ρ̄), σI(0) = 0.

(2.25)

7



4. The j-th index:

dSj
t +Dj

tdt

Sj
t

=
(
rt + (σj +ΣjXt)

′Λt

)
dt+ (σj +ΣjXt)

′ dBt, (2.26)

where

Σ2
j − (K + Λ)′Σj − Σj(K + Λ) +∆j −Rj = 0, 4 (2.27)

σj = (K + Λ− Σj)
′−1(δj − ρ− Σjλ). (2.28)

Proof. See Appendix A.1 in Batblod et al. [5].

Remark 1. We show in the real budget constraint in eq. (2.30) in Lemma 2
that r̄t in eq. (2.12) is the instantaneous real risk-free rate and that eq. (2.12)
is a generalized Fisher equation. Therefore, (ρ̄0, ρ̄, R̄) is the real rate version
of (ρ0, ρ,R). From this, we observe that (ΣI(τ), σI(τ)) in eqs. (2.24) and
(2.25) is the real rate version of (Σ(τ), σ(τ)) in eqs. (2.21) and (2.22).

2.2 Real Budget Constraint

Let Φj
t denote the portfolio weight on the j-th index. Regarding the default-

free bond, let φt(τ) and φI
t denote the densities of the portfolio weights on

the default-free bond and the default-free inflation-indexed bond with τ -
time to maturity. We assume that the functional space of the densities of
the portfolio weights on the bonds includes the set of distributions.

Let ct denote the consumption rate and define Ψt as:

Ψt =

∫ τ∗

0

{
φt(τ)(σ(τ)+Σ(τ)Xt)+φI

t (τ)(σI(τ)+ΣI(τ)Xt)
}
dτ+

J∑
j=1

Φj
t (σj+ΣjXt)−ΛIt.

(2.29)
ut = (ct, Ψt) denotes a control.

Let Wt denote the real wealth process. Next, the investor’s real budget
constraint is expressed in the following lemma.

Lemma 2. Under Assumption 1 and the no-arbitrage condition, given a
control ut, the budget constraint satisfies

dWt

Wt
=

(
r̄t + Ψ ′

tΛ̄t −
ct
Wt

)
dt+ Ψ ′

t dBt. (2.30)

Proof. See Appendix A.2 in Batbold et al. [5].

4Kikuchi [23] provides a sufficient condition under which the unique solution to this
Riccatti algebraic equation is positive-definite.
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Remark 2. Note that the real budget constraint in eq. (2) is expressed by
the instantaneous real risk-free rate, the real market price of risk, investment
control, and consumption-wealth ratio. The real budget constraint stands for
the instantaneous real rate of return on investment. Eq. (2.30) shows that
increasing risky asset investment in the sense of Ψt increases the investment
risk, while the real expected excess return increases in proportion to the real
market price of risk. That is, the real market price of risk is interpreted as
the price per unit investment risk for all investors.

Let X′
t = (Wt, X

′
t) and let W0 > 0. We call the control satisfying budget

constraint (2.30) with initial state X0 = (W0, X
′
0)

′ the admissible control
and denote by B(X0) the set of admissible controls.

3 Robust Consumption–Investment Control Prob-
lem

Here, we introduce the HR utility, and show a robust consumption–investment
control problem.

3.1 Homothetic Robust Utility

An investor with the HR utility regards probability P as the most likely
probability (hereafter, base probability) but cannot deny other probabilities
as the real probability. Thus, the investor assumes set P of all equivalent
probability measures5 as probability candidates. In conformity with Gir-
sanov’s theorem, any equivalent probability measure is characterized by a
measurable process ξt with Novikov’s integrable condition as the following
Radon-Nikodým derivative:

dPξ

dP
= exp

(∫ ∞

0
ξt dBt −

1

2

∫ ∞

0
ξ′tξtdt

)
.

Therefore, she/he decides the worst probability, which minimizes her/his
utility among set P of equivalent probability measures for every consumption
plan. That is, she/he rationally determines the worst probability for every
consumption plan, considering deviations from the base probabilities, as
follows:

U(c) = inf
Pξ∈P

Eξ

[∫ ∞

0
e−βt

(
c1−γ
t

1− γ
+

(1− γ)U ξ
t (c)

2θ
ξ′tξt

)
dt

]
, 6 (3.1)

5A probability measure P̃ is said to be an equivalent probability measure of P if and
only if P(A) = 0 ⇔ P̃(A) = 0.

6This representation of the HR utility utilizes the following expression of the discounted
relative entropy process by Skiadas [35].

Eξ
t =

1

2
Eξ

t

[∫ ∞

t

e−β(s−t)ξ′sξsds

]
.
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where Eξ is the expectation under Pξ, β is the subjective discount rate, γ is
the relative risk aversion coefficient, θ is a positive constant, and U ξ

t is the
utility process defined recursively as follows:

U ξ
t (c) = Eξ

t

[∫ ∞

t
e−β(s−t)

(
c1−γ
s

1− γ
+

(1− γ)U ξ
s (c)

2θ
ξ′sξs

)
ds

]
. (3.2)

Remark 3. In eq. (3.1), as θ ↘ 0, worst probability ξ∗ converges to zero,
that is, Pξ∗ converges to P and the HR utility degenerates into the CRRA
utility. The HR utility can be interpreted as a generalization of the CRRA
utility, which has been considered the standard utility in economics, to an
environment of Knightian uncertainty, while retaining homotheticity.

We call θ the relative ambiguity aversion coefficient.

3.2 Robust Consumption–Investment Problem

Assumption 2. The investor maximizes the following HR utility over an
infinite time horizon under budget constraint (2.30):

The investor’s indirect utility function is recursively defined by

Jξ(Xt) = Eξ
t

[∫ ∞

t
e−β(s−t)

{
c1−γ
s

1− γ
+

(1− γ)Jξ(Xs)

2θ
ξ′sξs

}
ds

]
. (3.3)

The investor’s consumption–investment problem and the value function
are defined by

V (X0) = sup
u∈B(X0)

inf
Pξ∈P

Jξ(X0). (3.4)

4 Worst Probability and Optimal Control

Here, we derive the worst probability and optimal control and then the PDE
for indirect utility.

4.1 Worst Probability

As the standard Brownian motion under Pξ is given by

Bξ
t = Bt −

∫ t

0
ξs ds,

the SDE (2.1) for the state vector under Pξ is rewritten as

dXt =

((
Wt(r̄t + Ψ ′

tΛ̄t)− ct
−KXt

)
+

(
WtΨ

′
t

IN

)
ξt

)
dt+

(
WtΨ

′
t

IN

)
dBξ

t . (4.1)

A nonrecurisuve representation is provided by Balter and Horvath [3].
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Therefore, the HJB equation for problem (3.4) is expressed as

sup
u∈B(X0)

inf
Pξ∈P

{(
Wt

(
r̄t + Ψ ′

tΛ̄t

)
− ct

−KXt

)′
(
Jξ
W

Jξ
X

)
+
1

2
tr

[(
WtΨ

′
t

IN

)(
WtΨ

′
t

IN

)′
(
Jξ
WW Jξ

WX

Jξ
XW Jξ

XX

)]

− βJξ +
c1−γ
t

1− γ
+

(1− γ)Jξ

2θ
ξ′tξt + ξ′t

(
WtΨ

′
t

IN

)′
(
Jξ
W

Jξ
X

)}
= 0, (4.2)

s.t. lim
T→∞

E[e−βTJξ(XT )] = 0.

It is straghtforward to see that worst probability Pξ∗ satisfies

ξ∗t = − θ

(1− γ)J∗

(
WtΨ

′
t

IN

)′(
J∗
W

J∗
X

)
, (4.3)

where J∗ is the abbreviation of the indirect utility Jξ∗ under the worst
probability.

Remark 4. Real budget constraint (2.30) under the worst probability is
rewritten as

dWt

Wt
=

{
r̄t + Ψ ′

t

(
Λ̄t −

θ

(1− γ)J∗

(
WtΨ

′
t

IN

)′(
J∗
W

J∗
X

))
− ct

Wt

}
dt+ Ψ ′

t dB
ξ∗

t .

(4.4)
In eq. (4.4), the terms in parentheses that are subject to the inner product of
investment control Ψt can be interpreted as the price per unit investment risk
under the worst probability for an investor with relative ambiguity aversion
θ. As shown by Remark 2, the price per unit investment risk when ambiguity
is not considered is the market price of risk common to all investors, whereas
the price per unit investment risk under the worst probability for investors
with the HR utility depends on the relative ambiguity aversion and varies
across investors. Eq. (4.4) shows that a more ambiguity averse investor
values a lower price per unit investment risk than the market price of risk
under the worst probability, meaning she/he values a lower real expected
excess rate of return on the wealth process under the worst probability.

Substituting P∗ into HJB equation (4.2) yields

sup
u∈B(X0)

[(
Wt

(
r̄t + Ψ ′

tΛ̄t

)
− ct

−KXt

)′(
J∗
W

J∗
X

)
+
1

2
tr

[(
WtΨ

′
t

IN

)(
WtΨ

′
t

IN

)′(
J∗
WW J∗

WX

J∗
XW J∗

XX

)]

− βJ∗ +
c1−γ

1− γ
− θ

2(1− γ)J∗

(
J∗
W

J∗
X

)′(
WtΨ

′
t

IN

)(
WtΨ

′
t

IN

)′(
J∗
W

J∗
X

)]
= 0. (4.5)
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4.2 Optimal Control under the Worst Probability

It is easy to see that optimal control u∗t = (c∗t , Ψ
∗
t ) in HJB equation (4.5)

satisfies

c∗t = J
− 1

γ

W , (4.6)

Ψ∗
t = Tt

(
Λ̄t +

JXW

JW
+

θ

γ − 1

JX
J

)
, (4.7)

where Tt is given by

Tt =
(
−W ∗

t JWW

JW
+ θ

W ∗
t JW

(1− γ)J

)−1

. (4.8)

When N = 4, we consider the example of an investor investing in a 10-
year default-free bond Pt(10), a 10-year default-free inflation-indexed bond
PIt(10), a market-capitalization-weighted stock index S1

t , and a market-
capitalization-weighted REIT index S2

t , in addition to the money market
account. We use the following notation:

Φt =


Φt(10)
ΦIt(10)

Φ1
t

Φ2
t

 , Σt(Xt) =


(σ(10) + Σ(10)Xt)

′

(σI(10) + ΣI(10)Xt)
′

(σ1 +Σ1Xt)
′

(σ2 +Σ2Xt)
′

 . (4.9)

Then, since eq. (2.29) leads to Ψt = Σt(Xt)
′Φt−ΛIt, it follows from eq. (4.7)

that optimal portfolio weights Φ∗
t on risky securities are given by

Φ∗
t = TtΣt(Xt)

′−1Λ̄t + TtΣt(Xt)
′−1 ∂

∂Xt
log JW

+
θ

γ − 1
TtΣt(Xt)

′−1 ∂

∂Xt
log((1− γ)J) + Σt(Xt)

′−1ΛIt. (4.10)

Remark 5. The optimal portfolio is decomposed into the sum of four terms.
The first term myopically pursues the market price of risk, which is the re-
ward for investing in risky assets, without considering the risk of the changes
in the indirect utility due to state process changes, and is called myopic de-
mand. The derivative in the second term is the rate of the increase in the
marginal indirect utility per unit of increase in the state process. Consid-
ering that the marginal indirect utility is a decreasing function, an increase
in marginal indirect utility implies a decrease in indirect utility; thus, the
second term represents the demand for insurance against the risk of changes
in indirect utility due to state process changes, and is called intertemporal
hedging demand.7 The fourth term insures inflation risk, and we call it in-
flation hedging demand. The optimal portfolio decomposed into the sum of

7This interpretation has already been made by Wachter [37].
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these three terms is presented by Brennan and Xia [8], Sangvinatsos and
Wachter [34], and Batbold et al. [5]. Considering that γ is assumed to be
greater than one, the derivative in the third term is the rate of the decrease
in indirect utility per unit of increase in the state process. As the third term
is proportional to the relative ambiguity aversion coefficient, it can be in-
terpreted as representing the demand for insurance against the ambiguity of
the changes in indirect utility due to state process changes, and we call it
intertemporal ambiguity hedging demand.

4.3 PDE for the Indirect Utility Function

The consumption-related terms in HJB equation (4.5) are computed as

−c∗tJW +
c∗1−γ
t

1− γ
=

γ

1− γ
J
1− 1

γ

W . (4.11)

The investment-related terms in HJB equation (4.5) are computed as

W ∗
t JW Λ̄′

tΨ
∗
t +

1

2
tr

[(
W ∗

t (Ψ
∗
t )

′

IN

)(
W ∗

t (Ψ
∗
t )

′

IN

)′(
JWW JWX

JXW JXX

)]

− θ

2(1− γ)J

(
JW
JX

)′(
W ∗

t (Ψ
∗
t )

′

IN

)(
W ∗

t (Ψ
∗
t )

′

IN

)′(
JW
JX

)
=

1

2
tr [JXX ]− θ

2(1− γ)J
J ′
XJX − π′

tπt

2W ∗2
t

(
JWW − θJ2

W
(1−γ)J

) , (4.12)

where

πt = −W ∗
t JW

(
Λ̄t +

JXW

JW
+

θ

γ − 1

JX
J

)
. (4.13)

By substituting optimal control (4.6) and (4.7) into HJB equation (4.5)
and using eqs. (4.11) and (4.12), the following PDE for J is obtained:

1

2
tr [JXX ]− θ

2(1− γ)J
J ′
XJX − π′

tπt

2W ∗2
t

(
JWW − θJ2

W
(1−γ)J

)
+W ∗

t r̄tJW −X ′
tK′JX +

γ

1− γ
J
1− 1

γ

W − βJ = 0. (4.14)

From the above PDE, we conjecture that the indirect utility function takes
the following form:

J(Xt) =
W 1−γ

t

1− γ

(
G(Xt)

)γ
. (4.15)

By inserting eq. (4.7) and the partial derivatives of J into the PDE
(4.14), we obtain the following proposition.
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Proposition 1. Under Assumptions 1 and 2 and the no-arbitrage condi-
tion, the indirect utility function, optimal consumption, and optimal invest-
ment for problem (3.4) satisfy eqs. (4.15), (4.16), and (4.17), respectively.
G(t,Xt) constituting the indirect utility function is a solution of PDE (4.18).

c∗t =
W ∗

t

G(Xt)
, (4.16)

Ψ∗
t =

1

γ + θ
Λ̄t +

(
1− 1

γ + θ

)
γ

γ − 1

GX(Xt)

G(Xt)
, (4.17)

1

2
tr

[
GXX

G

]
+

θ

2(γ − 1)(γ + θ)

G′
X

G

GX

G
+

(
−KXt +

γ + θ − 1

γ + θ
Λ̄t

)′ GX

G

+
1

G
− γ − 1

2γ(γ + θ)
Λ̄′
tΛ̄t −

γ − 1

γ
r̄t −

β

γ
= 0. (4.18)

Proof. See Appendix A.1.

As shown in the proof of Proposition 1, Tt in eq. (4.8) is expressed as

Tt =
1

γ + θ
. (4.19)

The reciprocal of the relative risk aversion is called relative risk tolerance.
In the following, we call the sum of the relative risk aversion and the relative
ambiguity aversion “relative uncertainty aversion” and the reciprocal of the
relative uncertainty aversion “relative uncertainty tolerance.” Eq. (4.19)
shows that Tt is the relative uncertainty tolerance.

Remark 6. In Remark 4, we show that a more ambiguity averse investor
values a lower price per unit investment risk than the market price of risk
under the worst probability; thus, the investor values a lower real expected ex-
cess rate of return on the wealth process under the worst probability. Eq. (4.19)
shows that, in the first stage of worst probability determination, an investor
with the HR utility values a lower price per unit investment risk than the
market price of the risk, depending on her/his relative ambiguity aversion,
and in the second stage of consumption–investment decision-making, values
an even lower price per unit investment risk, depending on her/his relative
risk aversion.

Consider the optimal portfolio for the same example in Section 4.2. As
shown in the proof of Proposition 1, the optimal portfolio in (4.10) is rewrit-
ten as

Φ∗
t =

1

γ + θ
Σt(Xt)

′−1Λ̄t +
γ

γ + θ
Σt(Xt)

′−1GX

G

+
γ

γ + θ

θ

γ − 1
Σt(Xt)

′−1GX

G
+Σt(Xt)

′−1ΛIt. (4.20)
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The intertemporal risk hedging demand and the intertemporal ambiguity
hedging demand are combined into

Φ∗
t =

1

γ + θ
Σt(Xt)

′−1Λ̄t +

(
1− 1

γ + θ

)
γ

γ − 1
Σt(Xt)

′−1GX

G
+Σt(Xt)

′−1ΛIt.

(4.21)
Hereafter, we refer to the second term in the above equation as “intertem-
poral uncertainty hedging demand.”

5 Approximate Analytical Solution

Here, we apply the loglinear approximation method developed by Campbell
and Viceira [15] and Batbold et al. [4], and then obtain an approximate
analytical solution.

5.1 Loglinear Approximation

In PDE (4.18), we have not only the nonhomogeneous term 1
G , but also

the nonlinear term θ
2(γ−1)(γ+θ)

G′
X
G

GX
G . Campbell and Viceira [15] note that,

in a nonhomogeneous linear PDE, the nonhomogeneous term is equal to
the stable consumption–wealth ratio. They perform the loglinear approxi-
mation of the nonhomogeneous term and derive an approximate analytical
solution. They perform the loglinear approximation around E[log

c∗t
W ∗

t
], but

the expected value depends on the time variable. Batbold et al. [4] use a

loglinear approximation around limt→∞ E[log
c∗t
W ∗

t
]. In this study, we follow

the loglinear approximation of Batbold et al. [4] as follows:

1

G(Xt)
≈ g0 − g1 logG(Xt), (5.1)

where

g0 = g1(1− log g1), (5.2)

g1 = exp
(
lim
t→∞

E
[
log
( c∗t
W ∗

t

)])
. (5.3)

In PDE (4.18), approximating nonhomogeneous term 1
G by eq. (5.1) and

inserting eqs. (2.11) and (2.12) into Λ̄t and r̄t, respectively, leads to the
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following approximate PDE:

1

2
tr

[
GXX

G

]
+

θ

2(γ − 1)(γ + θ)

G′
X

G

GX

G

−
{
KXt +

γ + θ − 1

γ + θ

(
λ̄+ Λ̄Xt

)}′ GX

G
− g1 logG

+g0−
γ − 1

2γ(γ + θ)
(λ̄+Λ̄Xt)

′(λ̄+Λ̄Xt)−
γ − 1

γ

(
ρ̄0 + ρ̄′Xt +

1

2
X ′

tR̄Xt

)
−β

γ
= 0.

(5.4)

An analytical solution to PDE (5.4) is expressed as:

G(Xt) = exp

(
ā+ a′Xt +

1

2
X ′

tAXt

)
, (5.5)

where A(τ) is a symmetric matrix.
Then,

g1 = exp
(
− lim

t→∞
E [logG(Xt)]

)
= exp

(
lim
t→∞

[
−ā− a′E[Xt]−

1

2
E[X ′

tAXt]

])
,

(5.6)
is calculated as in the following lemma.

Lemma 3. Under Assumptions 1 and 2, g1 is represented by the following
equation with (ā, a, A):

g1 = exp

(
−ā− 1

2

(
tr
[
(Q−1)′MQ−1

]))
, (5.7)

where M is a matrix such that

Mij =
1

li + lj
(Q′AQ)ij .

where Mij and (Q′AQ)ij are the (i, j)-th element of M and Q′AQ, respec-
tively.

Proof. See Appendix A.2.

5.2 Approximate Analytical Solution

By substituting G and its derivatives into PDE (5.4) and by paying attention
to A′ = A and

X ′
(
K +

γ + θ − 1

γ + θ
Λ̄

)′
AX = X ′A

(
K +

γ + θ − 1

γ + θ
Λ̄

)
X,
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we obtain

1

2
tr
[
aa′ +A+ aX ′

tA+AXta
′ +AXtX

′
tA
]
+

θ

2(γ − 1)(γ + θ)

(
a′ +X ′

tA
)
(a+AXt)

+

{
−γ + θ − 1

γ + θ
λ̄−

(
K +

γ + θ − 1

γ + θ
Λ̄

)
Xt

}′
a− γ + θ − 1

γ + θ
λ̄′AXt

− 1

2
X ′

t

(
K +

γ + θ − 1

γ + θ
Λ̄

)′
AXt −

1

2
X ′

tA

(
K +

γ + θ − 1

γ + θ
Λ̄

)
Xt

+g1(1−log g1)−g1

(
ā+ a′Xt +

1

2
X ′

tAXt

)
− γ − 1

2γ(γ + θ)

(
λ̄′
0λ̄+ 2λ̄′

0Λ̄Xt +X ′
tΛ̄

′Λ̄Xt

)
− γ − 1

γ

(
ρ̄0 + ρ̄′Xt +

1

2
X ′

tR̄Xt

)
− β

γ
= 0. (5.8)

As the equation above is identical onX, the following system of algebraic
equations for (ā, a, A) is derived:

γ(γ + θ − 1)

(γ − 1)(γ + θ)
A2−

(
K +

γ + θ − 1

γ + θ
Λ̄

)′
A−A

(
K +

γ + θ − 1

γ + θ
Λ̄

)
−g1A− γ − 1

γ(γ + θ)
Λ̄′Λ̄ = 0,

(5.9)
γ(γ + θ − 1)

(γ − 1)(γ + θ)
Aa−K′a−γ + θ − 1

γ + θ
(Aλ̄+Λ̄′a)−g1a−

γ − 1

γ(γ + θ)
Λ̄′λ̄−γ − 1

γ
ρ̄ = 0,

(5.10)

1

2
tr[A] +

γ(γ + θ − 1)

2(γ − 1)(γ + θ)
a′a+

(
−γ + θ − 1

γ + θ
λ̄

)′
a

+ g1(1− ā− log g1)−
γ − 1

2γ(γ + θ)
λ′λ− γ − 1

γ
ρ̄0 −

β

γ
= 0, (5.11)

where g1 is expressed by eq. (5.7).
The optimal control when the solution to PDE (4.18) is approximated

by the solution to approximate PDE (5.4) is called the approximate optimal
control, denoted by (c̃∗, Ψ̃∗). Then, we obtain the following proposition.

Proposition 2. Under Assumptions 1 and 2 and the no-arbitrage condition,
the optimal approximate consumption and the optimal approximate invest-
ment for problem (3.4) satisfy eqs. (5.12) and (5.13), respectively.

c̃∗t = Wt exp

[
−
(
ā+ a′Xt +

1

2
X ′

tAXt

)]
, (5.12)

Ψ̃∗
t =

1

γ + θ
(λ̄+ Λ̄Xt) +

(
1− 1

γ + θ

)
γ

γ − 1
(a+AXt) , (5.13)

where the set of coefficients (ā, a, A) is a solution to the system of nonlinear
algebraic equations (5.9)–(5.11).
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Remark 7. The system of nonlinear algebraic eqs. (5.9)–(5.11) is rewritten
as

γ(γ + θ − 1)

(γ − 1)(γ + θ)
A2

−
(
K +

γ + θ − 1

γ + θ
Λ̄ +

1

2
g1IN

)′
A−A

(
K +

γ + θ − 1

γ + θ
Λ̄ +

1

2
g1IN

)
− γ − 1

γ(γ + θ)
Λ̄′Λ̄ = 0, (5.14)

a =

(
γ(γ + θ − 1)

γ − 1
A− (γ + θ)(K + g1IN )− (γ + θ − 1)Λ̄′

)−1

×
(
(γ + θ − 1)Aλ̄+

γ − 1

γ

(
Λ̄′λ̄+ (γ + θ)ρ̄

))
(5.15)

ā =
1

g1

(
1

2
tr[A] +

γ(γ + θ − 1)

2(γ − 1)(γ + θ)
a′a+

(
−γ + θ − 1

γ + θ
λ̄

)′
a

+ g1(1− log g1)−
γ − 1

2γ(γ + θ)
λ′λ− γ − 1

γ
ρ̄0 −

β

γ

)
. (5.16)

Assume that g1 is constant and let

C = K +
γ + θ − 1

γ + θ
Λ̄ +

1

2
g1IN .

Then, eq. (5.14) becomes a Riccatti matrix algebraic equation for A because
Λ̄′Λ̄ is positive definite. Note that there exists a unique positive semi-definite
matrix solution because pair (C, IN ) is controllable. We can derive a numer-
ical solution for the system of algebraic equations shown above by using the
following algorithm:

1. Set ϵ to be a sufficiently small positive number.

2. Set g
(0)
1 = 1 and set k = 1.

3. Substitute g
(k−1)
1 into g1 in eq. (5.14). Then, we can derive a numerical

solution because eq. (5.14) becomes a Riccatti matrix algebraic equation
for A. Denote the numerical equation by Ak.

4. Substitute g
(k−1)
1 and Ak into g1 and A in eq. (5.15), respectively.

Then, we obtain a solution a, which we denote by ak.

5. Substitute g
(k−1)
1 and (ak, Ak) into g1 and (a,A) in eq. (5.16), respec-

tively. Then, we obtain a solution ā, which we denote by āk.
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6. Set g
(k)
1 = g1(āk, Ak).

7. If |g(k)1 − g
(k−1)
1 | < ϵ, then (āk, ak, Ak) is a numerical solution to the

system of algebraic eqs. (5.9)–(5.11).

8. Otherwise, increase k by 1 and repeat Steps 3–7.

5.3 Approximate Optimal Portfolio

Finally, we show the optimal portfolio choice for the example in Section 4.2.
Approximate optimal portfolio Φ̃∗

t is given by

Φ̃∗
t =

1

γ + θ
Σt(Xt)

′−1
(
λ̄+ Λ̄Xt

)
+

(
1− 1

γ + θ

)
γ

γ − 1
Σt(Xt)

′−1
(
a+AXt

)
+Σt(Xt)

′−1
(
λI + ΛIXt

)
.

(5.17)

The optimal portfolio choice for the money market account is 1− (Φ̃∗
t (10)+

Φ̃∗
It(10) + Φ̃∗1

t + Φ̃∗2
t ).

The optimal portfolio choice is decomposed into the sum of myopic de-
mand, intertemporal uncertainty hedging demand, and inflation hedging
demand. In eq. (5.17), all types of demand are nonlinear functions of the
state vector, because the inverse matrix of volatilities is its nonlinear func-
tion. The fact that the optimal portfolio is a nonlinear function of the state
vector suggests that achieving the market timing effect is not as simple as
rebalancing the portfolio weight of a single risky security or index based on
the business cycle. Rather, this implies that the market timing effect cannot
be achieved without finely rebalancing the portfolio weights among the risky
securities in response to the various phases created by the multidimensional
state vector. The importance of this timing effect is pointed out by Batbold
et al. [5] in the optimal portfolio for the CRRA utility. Because we obtain
the approximate analytical solution, we can implement the above complex
portfolio rebalancing to achieve market timing effects as long as we precisely
estimate the parameters and latent factor process in our quadratic security
market model. We can precisely estimate them using the quasi-maximum
likelihood method based on nonlinear filtering, but we leave this for a future
study.

6 Conclusions and Future Research Scope

In this study, we analyze a robust consumption–investment control prob-
lem for an investor with the HR utility under a quadratic security market
model. Under this model, all inflation rates, interest rates, and asset risk
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premiums and volatilities are stochastic and predictable. We obtain an op-
timal portfolio decomposed into the sum of four types of demand, that is,
myopic demand, intertemporal risk hedging demand, inflation hedging, and
intertemporal ambiguity hedging demand, which is proportional to the in-
vestor’s relative ambiguity aversion. We show that optimal investment is
inversely proportional to the relative uncertainty aversion, which is the sum
of relative risk aversion and relative ambiguity aversion. We apply the log-
linear approximation method of Campbell and Viceira [15] and Batbold et
al. [4] to the nonhomogeneous nonlinear PDE for the investor’s indirect util-
ity function, and derive an approximate analytical solution, in which the set
of parameters is represented as a solution to a system of nonlinear algebraic
equations. We then present an algorithm to derive a numerical solution to
this system of nonlinear algebraic equations. We show that the approximate
optimal portfolio is a nonlinear function of the state vector. This suggests
that the timing aspect is important, as pointed out by Batbold et al. [5]
in the optimal portfolio for the CRRA utility. Since we have access to the
approximate analytical solution for the optimal portfolio, we can implement
the above complex portfolio rebalancing to achieve market timing effects
as long as we can precisely estimate the parameters and the latent factor
process under the quadratic security market model. Finally, if the security
market model is affine rather than quadratic, the affine model can be inter-
preted as a linear state-space model; thus, the model parameters and the
state vector process can be estimated with high accuracy by the maximum
likelihood method based on Kalman filtering. However, for the quadratic
model, the state-space model is nonlinear. Therefore, some type of pseudo-
maximum likelihood method based on nonlinear filtering is necessary. In
a future study, we will estimate the quadratic model based on nonlinear
filtering.

A Proofs

A.1 Proof of Proposition 1

First, optimal consumption control (4.16) is obtained as follows:

c∗t = J
− 1

γ

W =

{(
G

W ∗
t

)γ}− 1
γ

=
W ∗

t

G
. (A.1)

Second, the derivatives of J are given by

WJW = (1− γ)J, JX = γ J
GX

G
, W 2JWW = −γ(1− γ)J,

WJXW = γ(1− γ)J
GX

G
, JXX = γ J

{
(γ − 1)

GX

G

G′
X

G
+

GXX

G

}
.
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Then, it is easy to see that Tt in eq. (4.8) is expressed as eq. (4.19), and
that πt in eq. (4.13) is rewritten as

πt = J

(
(γ − 1)Λ̄t + γ(γ + θ − 1)

GX

G

)
. (A.2)

Therefore, by inserting eq. (4.19) into eq. (4.7), we obtain optimal investment
control (4.17).

The first to third terms in PDE (4.14) are calculated from eqs. (A.2) as
follows:

1

2
tr [JXX ]− θ

2(1− γ)J
J ′
XJX − π′

tπt

2W 2
t

(
JWW − θJ2

W
(1−γ)J

)
=
γ

2
J

{
tr

[
(γ − 1)

GX

G

G′
X

G
+

GXX

G

]
+

γ2θ

2(γ − 1)

G′
X

G

GX

G

− 1

2(γ − 1)(γ + θ)

(
(γ − 1)Λ̄′

t + γ(γ + θ − 1)
G′

X

G

)(
(γ − 1)Λ̄′

t + γ(γ + θ − 1)
G′

X

G

)′}
=J

{
γ

2
tr

[
GXX

G

]
− γ − 1

2(γ + θ)
Λ̄′
tΛ̄t −

γ(γ + θ − 1)

γ + θ
Λ̄′
t

GX

G

+
γ

2

(
γ − 1 +

γθ

γ − 1
− γ(γ + θ − 1)2

(γ − 1)(γ + θ)

)
G′

X

G

GX

G

}
=γJ

{
1

2
tr

[
GXX

G

]
− γ − 1

2γ(γ + θ)
Λ̄′
tΛ̄t −

γ + θ − 1

γ + θ
Λ̄′
t

GX

G
+

θ

2(γ − 1)(γ + θ)

G′
X

G

GX

G

}
.

(A.3)

The sixth term in PDE (4.14) is calculated from eq. (A.1) as follows:

γ

1− γ
J
1− 1

γ

W = γ
J

W ∗
t

W ∗
t

G
= γ

J

G
, (A.4)

Substituting eqs. (A.3) and (A.4) into eq. (4.14) and dividing by γJ yields
eq. (4.18).

A.2 Proof of Lemma 3

Xt is expressed as the solution to linear SDE (2.1) as follows:

Xt = Qe−tLQ−1X0 +Q

∫ t

0
e−(t−s)LQ−1 dBs.

Thus, as lim
t→∞

e−tL = 0, lim
t→∞

E[Xt] = 0 holds.

Next, the following equation holds:

X ′
tAXt =

{
Qe−tLQ−1X0 +Q

∫ t

0
e−(t−s)LQ−1Σ dBs

}′

A

{
Qe−tLQ−1X0 +Q

∫ t

0
e−(t−s)LQ−1 dBs

}
.

21



Because E[dBsdB
′
t] = δstINds8, the following equation holds:

lim
t→∞

E[X ′
tAXt] = lim

t→∞

∫ t

0
tr
[
(Q−1)′e−(t−s)LQ′AQe−(t−s)LQ−1

]
ds

= tr

[
(Q−1)′ lim

t→∞

∫ t

0
e−(t−s)LQ′AQe−(t−s)LdsQ−1

]
= tr

[
(Q−1)′MQ−1

]
.

Therefore, eq. (5.7) holds.
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