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Abstract

We will provide the Walrasian equilibrium exstence theorem by the methods of elementary anal-

ysis or differential geometry rather than topological methods.
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1 Introduction

In this paper, we will investigate some kind of clasical existence theorem of Walrasian equilibrium for

a perfecctly competitive complete market economy. In the field of general equilibrium theory, existence

issue of Walrasian equilibria and research of their welfare properties have been considered as crucial and

central problem. For the detaied developments of the area, see, for example, [2], [6], [8], [9].

Economic agents, consumers and producers, trade their privately owned commodities by using price

or market mechanism embedded in the market economy in order to maximize their economic benefits.

Then, price or market mechanism adjusts their behaviors, interactions between economic agents. In

the Walrasian equilibrium prices, aggregate excess demand is equal to zero, and hence each economic

agent maximizes their benefits under the feasible allocation. The adjustment by price system does not

necessarily guarantee the realization of Walrasian equilibrium [4], however, the equilibrium concepts

are understood to be important as cornerstones and benchmarks for the interpretations of economic

activities. The existence issue of Walrasian equilibrium is concerned with the consistency of price or

market mechanism. It makes the consistency condition in the economic analysis clear.

Topological methods in the existence issue of Walrasian equilibrium are main streams in the research

areas of general equilibrium theory. On the other hand, analytical methods or methods using differntial

geometry have been cultivated by many reasearchers *1. See, for example, [14]. Our approach to the

existence issue is heavily dependent on one of the methods of analysis or differential geometry, which

have been cultivated by, for example, [11], [12]. As clearly indicated by [16], the existence of Walrasian

equilibrium is equivalent to Brouwer’s fixed point Theorem. Therefore, the central problem is reduced

to the some kinds of fixed point theorem, in paticular, Brouwer’s fixed point Theorem. There are many

methods of proof in (Brouwer’s) fixed point theorem, those of which are deeply connected in geometrical

natures. As stated in the above, our choice of method is one in differential geometry. The choices of

various kind of methodlogies are crucial from the viewpoints of comparison, and those plays crucial roles

in theoretical development. Our result seems to be transitinal in the sense that it is heavily analytical,

and there is room to examin algebraic constructions using differential forms or homotopic considerations.

Also, several parts of our assumptions are still strong, paticularly, Assumption 3. We would like to make

remaining issues weakened, and to extend the result to imcomplete sequential economies, in the future

research.

Our paper is constructed as the followings. In Section 2, assumptions of the economic primitives and

main theorem are stated. In Section 3, series of propositions and lemmas are described, and thus, main

result is completed in the proofs.

*1 It is impossible to overemphasize the importance of the methods of differential topology in these areas. Differential

topology have occupied the intermedeate and vast position among the topological methods and differential geometry.

See, again, [8].
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2 The Walrasian Model and Equilibrium Existence Theorem

In the perfectly competitive, complete markets of our Walrasian economy, n kinds of perfectly divisible

goods are traded, i.e. the commodity space is assumed to be Rn. Then, our fundamental economic

primitive for the perfectly competitive, complete markets is given by the C1-excess demand function

x : Rn
++ −→ Rn, where Rn

++ is strictly positive orthant of Rn, {p ∈ Rn : pi > 0 for any p = (p1, · · · , pn)}.
The domain Rn

++ of x is interpreted as the price space. We assume that excess demand function x satisfies

the following Assumption 1.

Assumption 1. *2 (i) x(tp) = x(p) for any t ∈ R++ and p ∈ Rn
++. (homogenity of degree 0)

(ii) ⟨p|x(p)⟩ = 0 for any p ∈ Rn
++. *

3 (Walras’s law)

(iii) lim
pk→p

∥x(pk)∥ = +∞ whenever lim
k→+∞

pk = p ∈ ∂Rn
++, where ∂Rn

++ is the boundary of Rn
++.

(boundary condition, or, the desirability of commodities)

(iv) There exists l ∈ Rn such that x(p) ≫ l. *4 (lower boundedness)

Let Sn−1 be a unit sphere {p ∈ Rn : ∥p∥ = 1} of Rn, and Sn−1
++ be a strictly positive orthant

{p = (p1, · · · , pn) ∈ Sn−1 : pi > 0 for any i} of Sn−1. By Assumption 1-(i), we can normalize price set

Rn
++ to Sn−1

++ . Therefore, by Assumption 1-(ii), we can regard x as a tangent vector field x : Sn−1
++ −→ Rn,

which is defined as p ∈ Sn−1
++ 7−→ xp = x(p), where xp ∈ TpS

n−1 is a tangent vector at p ∈ Sn−1. *5

Thus, we can restate Assumption 1 as Assumption 2.

Assumption 2. an excess demand for the Walrasian perfectly competitive economy is a C1-tangent

vector field x : Sn−1
++ −→ Rn satisfying the following assumptions

(i) ⟨p|xp⟩ = 0 for any p ∈ Sn−1
++ . (Walras’s law)

(ii) lim
pk→p

∥xpk∥ = +∞ whenever lim
k→+∞

pk = p ∈ ∂Sn−1
++ , where ∂Sn−1

++ is the boundary of Sn−1
++ .

(boundary condition, or, the desirability of commodities)

(iii) There exists l ∈ Rn such that xp ≫ l. (lower boundedness)

Note that xp is inward pointing near ∂Sn−1
++ by Assumption 2-(ii). Moreover, we add a technical

assumption.

Assumption 3. As function, x : Sn−1
++ −→ Rn is uniformly continuous on Sn−1

++ .

Our main result is the following theorem.

Theorem 1. There exists p ∈ Sn−1
++ such that xp = 0.

*2 Adding the another regular assumptions, it is wellknown that C2-smooth preferences [3] on the common consumption

set Rn
++ in pure exchange economy generates the excess dmand function which satisfies Assumption 1. Production

economy under the regular assumptions generates the the excess dmand function which satisfies Assumption 1, too

[8].
*3 ⟨·|·⟩ is a usual inner product on Rn × Rn.
*4 For a = (a1, · · · , an), b = (b1, · · · , bn) ∈ Rn, a ≫ b means that ai > bi for any i.
*5 TpSn−1 is a tangent vector space of Sn−1 at p ∈ Sn−1

++ .
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3 Series of Lemmas and Propositions

To lead a contradiction, suppose that xp ̸= 0 for any p ∈ Sn−1
++ , and define a non-zero unit C1-tangent

vector field X : Sn−1
++ −→ Rn on Sn−1

++ as p ∈ Sn−1
++ 7−→ Xp ≡ xp

∥p∥
. By Assumption 2, X satisfies the

following facts.

Fact 1. (i) ⟨p|Xp⟩ = 0 for any p ∈ Sn−1
++ .

(ii) ∥Xp∥ = 1 for any p ∈ Sn−1
++

Note that Xp is outward pointing at ∂Sn−1
++ by Fact 1-(i). Let Sn−1

+ be a positive orthant {p =

(p1, · · · , pn) ∈ Sn−1 : pi ≧ 0 for any i} of Sn−1.

Proposition 1. There exists a non-zero unit C0-tangent vector field X̃ : Sn−1
+ −→ Rn on Sn−1

+ such

that X̃p = Xp for any p ∈ Sn
++.

Proof. Fix p̄ ∈ ∂Sn−1
+ . Then, there exists a sequence {qk} such that qk ∈ Sn−1

++ and lim
k→+∞

qk = p̄,

and a convergent subsequence of {Xqk}, putting the limit as Xp̄ ∈ Sn−1
+ . Xp̄ satisfies that ⟨p̄|Xp̄⟩ = 0,

i.e,Xp̄ ∈ Tp̄∂S
n−1
+ and ∥Xp̄∥ = 1 by Fact 1-(ii). Vector field X is uniformly continuous on Sn−1

++ by

Assumption 3. Hence, for any ϵ > 0, there exists δ > 0 such that

∥pk − p̄∥ < δ implies ∥Xpk −Xp̄∥ ≦ ∥Xpk −Xql∥+ ∥Xql −Xp̄∥ < ϵ. (If necessary, take l large enough.)

Thus, unique tnagent vector Xp̄ ∈ Tp̄∂S
n−1
++ can be taken, and we can define a non-zero unit C0-tangent

vector field X̃ : Sn−1
+ −→ Rn on Sn−1

+ as

p ∈ Sn−1
+ 7−→ X̃p =

{
Xp : p ∈ Sn+1

++

Xp̄ : p = p̄ ∈ ∂Sn+1
+ .

Applying the Hopf’s extension argument [1], [5], [11], there exists an open set U such that Sn−1
+ ⊂ U

and C1-vector field X̃ext : U −→ Rn such that X̃ext
p = X̃p for any p ∈ Sn−1

+ . Abusing the notation, we

will merely denote X̃ext as X̃ in the following argument.

Lemma 1. There exist a Lipschitz constant c > 0 such that ∥X̃p − X̃q∥ ≦ c∥p− q∥ for any p, q ∈ Sn−1
+ .

Proof. Let A be a cube, say, A =
j∏

i=1

[ai, bi] , ai, bi ∈ R, ai < bi, 1 ≦ j ≦ n. We can identify X̃ with

C1-function x̃ : U −→ Rn since X̃ is C1-tangent vector field on U . Applying mean value theorem into

any coordinate function x̃i : U −→ R,

∥X̃p − X̃q∥ = ∥x̃(p)− x̃(q)∥ ≦
n∑

i=1

|x̃i(p)− x̃i(q)| =
n∑

i=1

|
⟨
∂ξi x̃

i|p− q
⟩
| ≦

n∑
i=1

∥∂ξi x̃i∥∥p− q∥,

ξi = θip+ (1− θi)q, θi ∈ [0, 1].
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We can take ci = max
ξ∈A

∥∂ξx̃i∥ since A is compact and x̃ is C1. Then, ∥X̃p − X̃q∥ ≦
n∑

i=1

ci∥p− q∥. Putting

c =
n∑

i=1

ci, ∥X̃p − X̃q∥ ≦ c∥p− q∥ uniformly.

Let Aα be an open cube such that Sn−1
++ ⊂

∪
α
Aα ⊂ U . We can assume {Aα} is a fimite collection since

Sn−1
+ is compact.

(i) If p, q ∈ Aα for some α, there exists cα such that ∥X̃p − X̃q∥ ≦ cα∥p− q∥ uniformly.

(ii) If (p, q) ∈ (A×A) \
∪
α
(Aα ×Aα), 0 < ∥p− q∥ uniformly. Since (A×A) \

∪
α
(Aα ×Aα) is compact,

a function F : (Aα × Aα) \
∪
α
(Aα × Aα) −→ R, defined by (p, q) 7−→ F (p, q) =∥X̃p − X̃q∥ is uniformly

continuous. Therefore, ∥X̃p − X̃q∥ ≦ ∥p− q∥ uniformly on (A×A) \
∪
α
(Aα ×Aα).

Putting c = max{1, (cα)α}, ∥X̃p − X̃q∥ ≦ c∥p− q∥ uniformly.

For any t ∈ R, define a function ft : A −→ Rn as p ∈ A 7−→ ft(p) = p+ tX̃p.

Lemma 2. ft is injective for |t| small enough.

Proof. Choose t so that |t| < c−1, and let ft(p) = ft(q) to indicate p = q. Suppose p ̸= q. Then, since

p− q = t(X̃q − X̃p),

∥p− q∥ = |t|∥X̃p − X̃q∥ ≦ c|t|∥p− q∥ < ∥p− q∥, which leads to a contradiction.

Proposition 2. vol
(
ft(S

n−1
+ )

)
is a polynomial function of t.

Proof. Differentiating ft at p ∈ Sn−1
+ ,

∂pft = In + t

[
∂x̃i

∂pj

]
,

where In is the identity matrix of n-th order, and,

[
∂x̃i

∂pj

]
is the Jacobian matrix of x̃.

Therefore, we can put det ∂pft = 1+
n∑

i=1

πi(p)t
i, which is a polynomial function of t. Note that any πi(p)

is continuous in U by the definition of the determinant. Since Sn−1
+ is compact, any πi(p) is uniformly

bounded. Hence, det ∂pft > 0 uniformly over Sn−1
+ for |t| small enough. By the change of variable

formula *6,

vol
(
ft(S

n−1
+ )

)
=

∫
Sn−1
+

|det ∂pft|dp =

∫
Sn−1
+

det ∂pftdp =

∫
Sn−1
+

(1 +

n∑
i=1

πi(p)t
i)dp

=

∫
Sn−1
+

1dp+

n∑
i=1

(∫
Sn−1
+

πi(p)dp

)
ti.

*6 See, for example, [13].
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Let A ⊂ Rn be a compact region whose indicator function is integrable, NA be a open set containing

A, and Y : NA −→ Rn be a C1-vector field.

Lemma 3. There exist a Lipschitz constant c > 0 such that ∥Yp − Yq∥ ≦ c∥p− q∥ for any p, q ∈ A.

Proof. The proof can be done as similarly as the proof of Lemma 1.

Take α > 0, and let

Sn−1
α,+ = {p ∈ Rn

+ : ∥p∥ = α}, Sn−1
α,t,+ =

{
p ∈ Rn

+ : ∥p∥ = α
√

1 + t2
}
.

Define a C1-function fα,t : S
n−1
α,+ −→ Rn as p ∈ Sn−1

α,+ 7−→ fα,t(p) = p+ t∥p∥X̃ p
∥p∥

.

Proposition 3. fα,t : S
n−1
α,+ −→ Rn is a bijective mapping onto Sn−1

α,t,+ for |t| small enough.

Proof. Applying Lemma 3, we can take c > 0 such that ∥X̃ q
∥q∥

− X̃ p
∥p∥

∥ ≦ c∥p− q∥ for any p, q ∈ Sn−1
α,+ .

Then, choose t so that |t| < c−1α−1, and let fα,t(p) = fα,t(q) to indicate p = q. Suppose p ̸= q. Then,

since p− q = t · α(X̃ q
∥q∥

− X̃ p
∥p∥

),

∥p− q∥ = α|t|∥X̃ q
∥q∥

− X̃ p
∥p∥

∥ ≦ cα|t|∥p− q∥ < ∥p− q∥, which leads to a contradiction.

Hence, fα,t is injective.

Let cA > 0 be the Lipschitz constant of a vector field ∥p∥X̃ p
∥p∥

for A =

{
p ∈ Rn

+ :
α

2
≦ ∥p∥ ≦ 3α

2

}
in

Lemma 3, let t ∈ R be such that |t| < c−1
A and |t| < 1

3
, and fix P0 ∈ Sn−1

α,+ . Defin a function gt : A −→ Rn

as p ∈ A 7−→ gt(p) = P0 − t∥p∥X̃ p
∥p∥

. Then,

α

2
≦ |∥P0∥ − |t|∥p∥| ≦ ∥gt(p)∥ ≦ ∥P0∥+ |t|∥p∥ ≦ 3α

2

Therefore, gt(p) ∈ A. For any p, q ∈ A,

∥gt(p)− gt(q)∥ = |t|
∥∥∥∥p∥X̃ p

∥p∥
− ∥q∥X̃ q

∥q∥

∥∥∥ ≦ |t|cA∥p− q∥, and 0 < |t|cA < 1.

Consequently, function gt has a fixed point p∗ ∈ A by Banach’s shrinking mapping theorem since A is a

compact, hence, a Banach space. Therefore,

p∗ = gt(p
∗), i.e. P0 = p∗ + t∥p∗∥X̃ p∗

∥p∗∥
= fα,t(p

∗).

On the other hand,

∥P0∥2 = ∥fα,t(p∗)∥2 = ∥p∗∥2 + t2∥p∗∥2 = (1 + t2)∥p∗∥2

∥p∗∥ =
α√

1 + t2
.

Hence, we can write √
1 + t2P0 = fα,t

(√
1 + t2 p∗

)
.

This implies that fα,t : S
n−1
α,+ −→ Rn is surjective onto Sn−1

α,t,+.
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Let α = 1. Then,

Sn−1
α,+ = Sn−1

+ , and Sn−1
α,t,+ = Sn−1

t,+ , where Sn−1
t,+ =

{
p ∈ Rn

+ : ∥p∥ = α
√
1 + t2

}
.

Note that a C1-function ft : S
n−1
+ −→ Rn as p ∈ Sn−1

+ 7−→ ft(p) = p+ t∥p∥X̃ p
∥p∥

is bijective onto Sn−1
t,+ .

Let

Bn
α,+ = {p ∈ Rn

+ : ∥p∥ ≦ α}, Bn−1
α,t,+ =

{
p ∈ Rn

+ : ∥p∥ ≦ α
√
1 + t2

}
.

Fix a, b ∈ R so that 0 < a < b, and put a compact region Ab
a as Bn

b,t \ intBn
a,t = {p ∈ Rn

+ : a ≦ ∥p∥ ≦ b},
, and defin a vector field X̃b

a : Ab
a −→ Rn as p ∈ Ab

a 7−→ X̃p = ∥p∥X p
∥p∥

, which is a C1- vetor field.

Proof of Theorem 1. First, let n be an odd number. Define a function f b
t,a : Ab

a −→ Bn
b,+ \ intBn

a,+ as

p ∈ Ab
a 7−→ p+ t∥p∥X̃ p

∥p∥
. Let |t| be small enough so that Proposition 3 holds. Then, f b

t,a : Ab
a −→

Bn
b,+ \ intBn

a,+ is a bijective C1-mapping onto Bn
b,+ \ intBn

a,+. Since the volume of n-dim ball is propor-

tional to the n-th power of the radius,

vol (ft(A)) =
(√

1 + t2
)n

· volA

must hold. But, the right hand side of the equation is not a polynomial function since n is an odd

number. This is a contradiction to Proposition 2.

Next, let n be an even number, and suppose xp ̸= 0 for any p ∈ Sn−1
++ , which satisfies Assumption 2

and 3. Then, applying Proposition 1 to xp, we can get an extended C1-vector field X̃ : Sn−1
+ −→ Rn,

which satisfies Fact 1, Proposition 1, and unifrom continuity. Define a C1-vector field X̂ : Sn
+ −→ Rn+1

as (p, q) ∈ Sn
+ 7−→ (X̃ p

∥p∥
, 0). Since X̂ is uniformly continuous and outward pointing on ∂Sn

++, we can

apply the argument in this chapter, which leads to a contradiction since n+ 1 is an odd number. Thus,

proofs are completed.
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