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Abstract

We consider a finite continuous-time optimal consumption and in-
ternational asset allocation problem for an agent with CRRA utility,
assuming a quadratic factor international security market model in
which, latent factors are constituted of global economy factors and
currency specific factors. It is not generally straightforward to find an
analytical solution to the partial differential equation (PDE, hereafter)
for the agent’s indirect utility function, since a non-homogeneous term
appears in the PDE. We apply a method of Liu [11] and Batbold et
al. [4] to the PDE, and derive a semi-analytical solution. In the optimal
investment ratio based on the solution, the market price of currency
specific risk, the disparities between domestic and foreign market prices
of global economy risk, and the disparities between domestic and for-
eign market prices of currency specific risk appear.

1 Introduction

The importance of general household asset formation has been emphasized
against the background of the public pension finance deterioration due to
low growth and aged economy in most developed countries. International
security investment in high growth countries, such as emerging countries, is
essential for the general household in low growth country to effectively form
the asset. Thus it is crucial for the government to lead the general house-
hold, whose investment knowledge tends to be insufficient, to enable effective
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international security investment. Considering that the general household
has limited investment knowledge, we should promote an asset allocation to
domestic and foreign government bonds and main indices including stock
indices and REIT indices instead of active management.

The purpose of this paper is to derive a semi-analytical solution to an
optimal consumption and international asset allocation problem assuming a
highly general continuous-time international security market model, and to
contribute to useful discussions on an exemplary international asset alloca-
tion for the general household.

Campbell and Viceira [6] considered an infinite continuous-time opti-
mal consumption and investment problem under the assumption that an
agent with CRRA utility invests in an instantaneously risk-free security and
a zero-coupon bond with a constant time to maturity under the Vasicek
one-factor term-structure model. A second-order partial differential equa-
tion (PDE, hereafter) for the value function is delivered from the Hamilton-
Yacobi-Bellman (HJB, hereafter) equation, but it is not generally straight-
forward to find an analytical solution to the PDE, since a non-homogeneous
term appears in the PDE. They derive an approximate analytical solution
applying the log-linear approximation proposed by Campbell [5] to the non-
homogeneous term.

On the other hand, Liu [11] examined a finite continuous-time horizon
optimal consumption and investment problem under the assumption that
an agent with CRRA utility invests in an instantaneously risk-free asset and
risky securities under a highly general multi-factor security market model in
which latent factors satisfy a diffusion process and both of the drift and diffu-
sion functions are quadratic functions of the factors, and both of the market
price of risk and the instantaneous interest rates are affine functions of the
factors. He paid attention to a fact that a solution for the non-homogeneous
PDE for the indirect utility function derived from the HJB equation is ex-
pressed as an integral of the solution for a homogeneous PDE ignoring the
non-homogeneous term of the non-homogeneous PDE, and derived a system
of ordinary differential equations (ODEs, hereafter) for unknown parameters
constituting of the integrand.

Recently, Batbold, Kikuchi, and Kusuda [4] have considered a finite
continuous-time optimal consumption and investment problem under the
assumption that an agent with CRRA utility invests in an instantaneously
risk-free asset, bonds, and indices under a highly general multi-factor secu-
rity security market model in which latent factors satisfy a multi-dimensional
version of diffusion Ornstein-Uhlenbeck process, and both of the market
price of risk and the short-term interest rates are affine functions of the fac-
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tors. They have expressed the indirect utility function as an integral of a
solution for the above homogeneous PDE applying the method of Liu [11],
and derived the system of ODEs for unknown parameters constituting of
the integrand. They have solved the ODEs, and derived a semi-analytical
solution which is a time-integrated analytic function.

In all of the above studies, one-country security market model is assumed.
Surprisingly few studies has been made at continuous-time international se-
curity market model including both of stock markets and bond markets.
Very recently, Kikuchi [9] has unified a quadratic international bond mar-
ket model of Leippold and Wu [10] with a quadratic stock market model
which is a generalized version of the affine one-country stock market model
of Mamaysky [12], and proposed a quadratic international security market
model.

We assume a stationary latent factor international security continuous-
time model which eliminates a non-stationary factor in the Kikuchi’s model
and consider the same problem as Batbold et al. [4]. In the security market
model, latent factors are constituted of global economy factors and currency
specific factors. These factors satisfy the multi-dimensional version of the
Ornstein-Uhlenbeck process. In each country, the market price of global
economy risk and the market price of currency specific risk is an affine
function of the international economy factors and of the currency specific
factors, respectively, and the instantaneous interest rate, the dividend-rate,
and the expected inflation-rate are quadratic functions of the international
economy factors. Main results of this paper is summarized as follows.

We apply the method of Liu [11] and Batbold et al. [4] to our problem,
and derive a semi-analytical solution. In the optimal investment ratio based
on the solution, the market price of currency specific risk, the disparities
between domestic and foreign market prices of global economy risk, and the
disparities between domestic and foreign market prices of currency specific
risk appear, while all of them do not appear in the optimal investment ratio
for one-country security investment problem. It indicates that in interna-
tional security investment, an investor should correctly estimate the global
economy factors, the currency specific factors, the market price of disparities
between domestic and foreign market prices of global economy risk, and the
disparities between domestic and foreign market prices of currency specific
risk.

The rest of this paper is organized as follows. In Section 2, we explain the
stationary latent factor international security market model and the agent’s
optimal consumption and security investment problem. In Section 3, we
derive a semi-analytical solution to the problem, and present an optimal
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consumption-wealth ration and investment ratio.

2 Stationary Quadratic International Security Mar-
ket Model and Consumer’s Problem

In this section, we first introduce the stationary quadratic international
security market model, and present stochastic differential equations (SDEs,
hereafter) which domestic and foreign security’s return rate processes satisfy
under no arbitrage condition.

2.1 Market Environment

We consider a frictionless international security market economy which con-
sists of USA and N different currency areas with time span [0,∞). Agents’
common subjective probability and information structure is modeled by a
complete filtered probability space (Ω,F ,F,P) where F = (Ft)t∈[0,∞) is the
natural filtration generated by a N̄ -dimensional standard Brownian motion
Bt. We indicate the expectation operator under P with E, and the condi-
tional expectation operator with Et, respectively.

In the US market, there are markets for the consumption commodity and
securities at every date t ∈ [0,∞). The traded securities are nominal-risk-
free security called the money market account, a continuum of zero-coupon
bonds whose maturity dates are (t, t+ τ̄ ], each of which has a one US dollar
payoff at its maturity date, J main indices (stock indices, REIT indices, et
al.).

In the n-th currency area (n ∈ {1, · · · , N}), there are security markets at
every date t ∈ [0,∞). The traded securities are a continuum of zero-coupon
bonds whose maturity dates are (t, t+ τ̂n], each of which has a one currency
payoff concerned at its maturity date, Ĵn main indices. There are foreign
exchange markets between any two currency areas at t ∈ [0,∞).

At every date t, let Pt, P
T
t , and Sj

t denote the US dollar price of money
market account, the zero-coupon bond with maturity date T , and the j-
th index, respectively, in the US. Similarly, at every date, let P̂ T

nt and Ŝj
nt

denote the n-th currency unit price of the zero-coupon bond with maturity
date T , and the j-th index, respectively, in the n-th currency area.

2.2 Stationary Quadratic International Security Market Model

Very recently, Kikuchi [9] has presented a quadratic international security
market model which unifies the international bond market model of Leip-
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pold and Wu [10] with a quadratic stock market model which is a generalized
version of an affine stock market model presented in Mamaysky [12]. We as-
sume the stationary quadratic international security market model in which
we eliminate a non-stationary factor on stock prices in the Kikuchi’s model.

Let Xt = (X ′
t, Y

′
t )

′ ∈ RM+N be some vector process with Xt ∈ RM and
Yt ∈ RN , and let

Bt =

(
BX

t

BY
t

)
with BX

t ∈ RM and BY
t ∈ RN .

Assumption 1. The vector process Xt describes the state of the global econ-
omy, and the state vector processes Xt and Yt are controlled by the following
SDEs:

dXt = −KXXt dt+ dBX
t , (2.1)

dYt = −KY Yt dt+ dBY
t , (2.2)

where KX is an M ×M constant matrix, KY is an N ×N constant matrix,
and each of these matrices is a positive lower triangular matrix.

The state vector processesXt and Yt follow multivariate Ornstein-Uhlenbeck
processes with mean reversion. For identification purposes, the two processes
are normalized to have zero long-run means and identity instantaneous vari-
ance.1

Each country’s state price deflator is assumed to be orthogonally de-
composed into a deflator related to the state process Xt and that related to
Yt.

Assumption 2. The domestic and the n-th foreign state-price deflators πt
and π̂t are expressed as

πt = πXt πYt , π̂nt = π̂Xnt π̂
Y
nt, (2.3)

where πXt and π̂Xntare diffusion processes which depend on only BX
t , and πYt

and π̂Yntare expressed as

dπYt
πYt

= −ΛY
t dB

Y
t ,

dπ̂Ynt
π̂Ynt

= −Λ̂Y
nt dB

Y
t . (2.4)

Furthermore, any security price process is a diffusion process, and depends
on only BX

t .
1See Kikuchi[9] for a detailed discussion of the identification issue.
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Then it is straightforward to see the following lemma.

Lemma 1. Under Assumptions 1 and 2, the following 1 and 2 hold iff there
is no arbitrage.

1. πXt and π̂Xnt satisfy

dπXt
πXt

= −rt dt− ΛX
t dBX

t ,
dπ̂Xnt
π̂Xnt

= −r̂nt dt− Λ̂X
nt dB

X
t , (2.5)

where rt and r̂nt is the domestic and the n-th foreign instantaneous
interest rate, respectively, and ΛX

t and Λ̂X
nt is the market price of do-

mestic risk and the market price of n-th foreign risk, respectively.

2. The process of exchange rate against the n-th foreign currency satisfies

dεnt
εnt

=

(
rt − r̂nt +

(
ΛX
t − Λ̂X

nt

ΛY
t − Λ̂Y

nt

)′(
ΛX
t

ΛY
t

))
dt+

(
ΛX
t − Λ̂X

nt

ΛY
t − Λ̂Y

nt

)′

dBt.

(2.6)

Proof. See Appendix A.1.

Remark 1. Lemma 1 implies that Yt describes the state of currency and
that Xt describes the state of the global economy except the state of currency.
We call Xt global economy factor and Yt currency factor, hereafter.

Remark 2. Leippold and Wu [10] estimate their international bond market
model using U.S. and Japanese LIBOR and swap rates and the exchange
rate between the two economies. They conclude that independent currency
factors are essential to capture the portion of the exchange rate movement
that is independent of the term structure movement.

Assumption 3. 1. The market prices of domestic risk and the n-th for-
eign risk are affine functions of the global economy factors Xt.

ΛX
t = λX + ΛXXt, Λ̂X

nt = λ̂nX + Λ̂n
XXt, (2.7)

where KX + ΛX is regular.

2. The market prices of domestic currency risk and n-th foreign currency
risk are affine functions of the currency factors Yt.

ΛY
t = λY + ΛY Yt, Λ̂Y

nt = λ̂nY + Λ̂n
Y Yt. (2.8)
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3. The domestic and the n-th foreign instantaneous interest rates are
quadratic functions of the global economy factors Xt.

rt = ρ0+ρ′Xt+
1

2
X ′

tRXt, r̂nt = ρ̂0n+ρ̂
′
nXt+

1

2
X ′

tR̂nXt, (2.9)

where R and R̂n are symmetric matrices.

4. The domestic and the n-th foreign dividend processes are quadratic
functions of the global economy factors Xt.

Dj
t =

(
d0j + d′jXt +

1

2
X ′

t∆jXt

)
exp

(
b0j t+ b′jXt +

1

2
X ′

tΣjXt

)
,

D̂j
nt =

(
d̂0nj + d̂′njXt +

1

2
X ′

t∆̂njXt

)
exp

(
b̂0njt+ b̂′njXt +

1

2
X ′

tΣ̂jXt

)
,

where ∆j ,Σj , ∆̂nj , Σ̂j are symmetric matrices.

5. The domestic price index satisfies

dpt
pt

= it dt, p0 = 1, (2.10)

where it is the expected instantaneous inflation rate, and it is a quadratic
function of Xt.

it = ι0 + ι′Xt +
1

2
X ′

tIpXt, (2.11)

where Ip is a symmetric matrix.

2.3 Domestic and Foreign Return Rate Processes and Bud-
get Constraint

Let In and τ = T − t denote n×n identity matrix and the time to maturity
of the bond P T

t , respectively. We use the following notation.

Λt =

(
ΛX
t

ΛY
t

)
, Λ̂nt =

(
Λ̂X
nt

Λ̂Y
nt

)
.

Kikuchi [9] shows the following lemma.

Lemma 2. Under Assumptions 1-3, the following hold:

1. Arbitrage-free domestic security price processes satisfy the following:
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(i) The short-term bond:

dPt

Pt
= rt dt, P0 = 1. (2.12)

(ii) The default-free bond with time to maturity τ :

dP T
t

P T
t

=
(
rt + (b(τ) + Σ(τ)Xt)

′ΛX
t

)
dt+(b(τ)+Σ(τ)Xt)

′dBX
t , P

T
T = 1,

(2.13)
where

dΣ(τ)

dτ
= Σ2(τ)− 2Σ(τ)(KX + ΛX)−R, Σ(0) = 0, (2.14)

db(τ)

dτ
=
(
Σ(τ)− (KX + ΛX)′

)
b(τ)− Σ(τ)λX − ρ, b(0) = 0,

(2.15)

(iii) The j-th index:

dSj
t +Dj

tdt

Sj
t

=
(
rt + (bj +ΣjXt)

′ΛX
t

)
dt+ (bj +ΣjXt)

′dBX
t ,

(2.16)
where

Σ2
j − (KX + ΛX)′Σj +

1

2
(∆j −Rj) = 0, (2.17)

bj = (KX + ΛX − Σj)
′−1(dj − ρ− ΣjλX). (2.18)

2. Arbitrage-free n-th foreign security price processes in domestic cur-
rency term satisfy the following:

(i) The default-free bond with time to maturity τ :

d(P̂ T
ntεt)

P̂ T
ntεnt

=

{
rt +

((
b̂n(τ) + Σ̂n(τ)Xt

0

)
+

(
ΛX
t − Λ̂X

nt

ΛY
t − Λ̂Y

nt

))′(
ΛX
t

ΛY
t

)}
dt

+

((
b̂n(τ) + Σ̂n(τ)Xt

0

)
+

(
ΛX
t − Λ̂X

nt

ΛY
t − Λ̂Y

nt

))′

dBt, (2.19)

where

dΣ̂n(τ)

dτ
= σ̂2n(τ)− 2Σ̂n(τ)(KX + Λ̂n

X)− R̂n, Σ̂(0) = 0, (2.20)

db̂n(τ)

dτ
=
(
Σ̂n(τ)− (KX + Λ̂X)′

)
b̂n(τ)−Σ̂n(τ)λ̂X−ρ̂n, b(0) = 0.

(2.21)
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(ii) The j-th index:

d(Ŝj
ntεnt) + D̂j

ntεntdt

Ŝj
ntεnt

=

{
rt +

((
b̂nj + Σ̂njXt

0

)
+

(
ΛX
t − Λ̂X

nt

ΛY
t − Λ̂Y

nt

))′(
ΛX
t

ΛY
t

)}
dt

+

((
b̂nj + Σ̂njXt

0

)
+

(
ΛX
t − Λ̂X

nt

ΛY
t − Λ̂Y

nt

))′

dBt, (2.22)

where

Σ̂2
j − (KX + Λ̂X)′Σ̂j +

1

2
(∆̂nj − R̂n) = 0, (2.23)

b̂nj = (KX + Λ̂n
X − Σ̂nj)

′−1(d̂nj − ρ̂n − Σ̂nj λ̂
n
X). (2.24)

Proof. See Appendix A.2.

Remark 3. ΛY
t does not appear in domestic price processes (i.e., eqs. (2.13)

and (2.16)), but appears in the exchange rate process (i.e., eqs. (2.6), (2.19),
and (2.22)) as a market price of risk. Thus we call ΛY

t the market price of
currency risk as in Leippold and Wu [10]. Similarly, we call Λ̂Y

nt the market
price of n-th foreign currency risk.

Remark 4. In the exchange rate process (i.e., eq. (2.6)), the disparity be-
tween domestic and foreign prices of global economy risk (i.e, ΛX

t − Λ̂X
nt）

and the disparity between domestic and foreign prices of currency risk (i.e,
ΛY
t − Λ̂Y

nt) are volatilities in the exchange rate. As a result, the exchange
rate’s expected return rate depends not only on the disparity between domes-
tic and foreign instantaneous interest rate but also on the disparities between
domestic and foreign prices of these market risks. Similarly, volatilities in
the n-th foreign security prices in domestic currency term (i.e., eqs. (2.19)
and the disparity between domestic and foreign prices of global economy risk
and the disparity between domestic and foreign prices of currency risk, and
these prices of market risks also appear in the expected return rates in these
securities.

Let Φj
t and Φ̂

j
nt denote the portfolio share in the j-th domestic index and

in the j-th foreign index, respectively. Regarding the default-free bond, let
φt(τ) and φ̂nt(τ) denote the portfolio share density in the domestic bond
with τ -time to maturity and in the foreign bond with τ -time to maturity2.

2We suppose that the functional spaces of portfolio share densities in domestic and
foreign bonds include distributions.
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Define Ψt by

Ψt =

(
ΨX
t

0

)
+

(
Ψ̂X
t

Ψ̂Y
t

)
, (2.25)

where

ΨX
t =

∫ τ̄

0
φt(τ)b(τ) dτ +

J∑
j=1

Φj
tbj ,

Ψ̂X
t =

N∑
n=1

∫ τ̂n

0
φ̂nt(τ)

(
b̂n(τ) + (ΛX

t − Λ̂X
nt)
)
dτ+

N∑
n=1

Ĵn∑
j=1

Φ̂j
nt

(
b̂nj + (ΛX

t − Λ̂X
nt)
)
,

Ψ̂Y
t =

N∑
n=1

∫ τ̄n

0
φ̂nt(τ) dτ (Λ

Y
t − Λ̂Y

nt) +

N∑
n=1

Ĵn∑
j=1

Φ̂j
nt(Λ

Y
t − Λ̂Y

nt).

We call Ψt the investment control, hereafter.
LetWt denote the real wealth process. Then the agent’s budget-constraint

is expressed as in the following lemma.

Lemma 3. Under Assumptions 1 and 3, given an investment control Ψt and
the consumption control ct, the budget-constraint satisfies

dWt =
{
Wt

(
r̄t + Ψ ′

tΛt

)
− ct

}
dt+WtΨ

′
t dBt, (2.26)

where r̄t = rt − it.

Proof. See Appendix A.3.

The budget constraint (2.26) shows that the real weal process is deter-
mined by the control ut = (ct, Ψt).

2.4 Consumption and Asset Allocation Problem

Assumption 4. The agent maximizes following CRRA utility under the
budget-constraint (2.26).

U(c) = E

[∫ T

0
α e−βt c

1−γ
t

1− γ
dt+ (1− α) e−βT W

1−γ
T

1− γ

]
. (2.27)

Let Xt = (Wt, X
′
t, Y

′
t )

′. We call a control ut = (ct, Ψt) satisfying the
budget-constraint (2.26) with the initial state X0 = (W0, X

′
0, Y

′
0)

′ the ad-
missible control and denote B(X0) the set of admissible controls.
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Then the indirect utility function is defined by

J(t,Xu
t ) = Et

[∫ T

t
α e−βt c

1−γ
t

1− γ
dt+ (1− α) e−βT W

1−γ
T

1− γ

]
, ∀t ∈ [0, T ].

(2.28)
The agent’s consumption and portfolio choice problem and the value

function is defined by

V (X0) = sup
u∈B(X0)

J(0,X0). (2.29)

3 Semi-analytical Solution and Optimal Control

In this section, we first derive the PDE for an unknown function constituting
of the indirect utility function from the HJB equation. Then we derive the
semi-analytical solution to the PDE and present the optimal consumption
and asset allocation.

3.1 PDE for the Indirect Utility Function

The HJB equation is expressed as

sup
u∈B(X0)

{
Jt(t,X

u) + µ′tJX(t,Xu) +
1

2
tr [JXX(t,Xu)] + αe−βt c

1−γ

1− γ

}
= 0

(3.1)

s.t. J(T,Xu
T ) = (1− α) e−βT W

1−γ
T

1− γ
,

where

µt =

µWµX
µY

 =

Wt(r̄t + Ψ ′
tΛt)− ct

−KXXt

−KY Yt

 , Σt =

Wt(Ψ
X
t )′ Wt(Ψ

Y
t )′

IM 0
0 IN

 .

Then the optimal control u∗ = (c∗, Ψ∗) satisfies the following:

c∗t = α
1
γ e

−β
γ
t
J
− 1

γ

W , (3.2)

Ψ∗
t =

ψt

W ∗2
t JWW

, (3.3)

where

ψt = −W ∗
t

{
JW

(
ΛX
t

ΛY
t

)
+

(
JXW

JYW

)}
. (3.4)
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The consumption related terms are computed as

−c∗tJW+αe−βt c
∗1−γ
t

1− γ
=

c∗t
1− γ

{
(γ−1)JW+αe−βtc∗−γ

t

}
=

γ

1− γ
c∗tJW , (3.5)

Regarding the portfolio related terms, we should note

W ∗
t JW (Ψ∗

t )
′Λt +W ∗

t (Ψ
X∗
t )′JXW +W ∗

t (Ψ
Y ∗
t )′JYW = −W ∗2

t JWW (Ψ∗
t )

′Ψ∗
t .

(3.6)
Then we obtain

W ∗
t JW (Ψ∗

t )
′Λt

+
1

2
tr

W ∗
t (Ψ

X∗
t )′ W ∗

t (Ψ
Y ∗
t )′

IM 0
0 IN

W ∗
t (Ψ

X∗
t )′ W ∗

t (Ψ
Y ∗
t )′

IM 0
0 IN

′JWW JWX JWY

JXW JXX JXY

JYW JY X JY Y


=W ∗

t JW (Ψ∗
t )

′Λt

+
1

2
tr


W ∗2

t

(
(ΨX∗

t )′ΨX∗
t + (ΨY ∗

t )′ΨY ∗
t

)
W ∗

t (Ψ
X∗
t )′ W ∗

t (Ψ
Y ∗
t )′

W ∗
t Ψ

X∗
t IM 0

W ∗
t Ψ

Y ∗
t 0 IN


JWW JWX JWY

JXW JXX JXY

JYW JY X JY Y




=
1

2
tr [JXX + JY Y ]−

ψ′
tψt

2W ∗2
t JWW

. (3.7)

Substituting the optimal control (3.2) and (3.3) into the HJB eq. (3.1),
and using eqs. (3.5) and (3.7) yield the following PDE for J .

Jt +
1

2
tr [JXX + JY Y ]−

ψ′
tψt

2W ∗2
t JWW

+ r̄tW
∗
t JW + (−KXXt)

′JX + (−KY Yt)
′JY +

γ

1− γ
c∗tJW = 0. (3.8)

From the above PDE, we guess that indirect utility function takes the form

J(t,Xt) = e−βtW
1−γ
t

1− γ

(
G(t,Xt, Yt)

)γ
. (3.9)

where G(t,Xt, Yt) is function of (t,Xt, Yt).
Then the sufficient condition for optimization in the left-hand side of the

HJB equation is confirmed since the following Hessian H is negative definite
for any control (c, Ψ) ∈ R+ × RN .

H =


−αγe−βtc−γ−1 0 · · · 0

0 −γe−βtW 1−γ
t Gγ · · · 0

...
...

. . .
...

0 0 · · · −γe−βtW 1−γ
t Gγ

 . (3.10)
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Putting eqs. (3.2), (3.3) and partial derivatives of J into the PDE (3.8),
we obtain the following proposition.

Proposition 1. Under Assumptions 1-4, the indirect utility function, the
optimal consumption, and the optimal investment for the problem (2.29)
satisfy eqs. (3.9), (3.11), and (3.12), respectively. The function G(t,Xt, Yt)
constituting of the indirect utility function is a solution to the PDE (3.13).

c∗t = α
1
γ
W ∗

t

G
, (3.11)

Ψ∗
t =

1

γ

(
ΛX
t

ΛY
t

)
+

(GX
G
GY
G

)
, (3.12)

∂

∂t
G(t,Xt, Yt) + LG(t,Xt, Yt) + α

1
γ = 0,

G(T,XT , YT ) = (1− α)
1
γ , (3.13)

where L is a linear differential operator defined by

LG =
1

2
tr [GXX +GY Y ]

+

(
−KXX − γ − 1

γ
(λX + ΛXX)

)′
GX+

(
−KY Y − γ − 1

γ
(λY + ΛY Y )

)′
GY

−
{
γ − 1

2γ2

(
(λX + ΛXX)′(λX + ΛXX) + (λY + ΛY Y )′(λY + ΛY Y )

)
+
γ − 1

γ

(
ρ0 − ι0 + (ρ− ι)′X +

1

2
X ′(R− Ip)X

)
+
β

γ

}
G. (3.14)

Proof. See Appendix A.4.

3.2 A Semi-analytical Solution

A non-homogeneous term α
1
γ appears in the PDE (3.13), and it makes

difficult to derive an analytical solution. Liu [11] presents a method to derive
a semi-analytical solution exploiting an analytical solution to a homogeneous
PDE which abandons the non-homogeneous term. Following his method, we
examine the homogeneous PDE (3.15).

∂

∂τ
g(τ,X, Y ) = Lg(τ,X, Y ), g(0, X, Y ) = 1. (3.15)

An analytical solution to the (3.15) is expressed as

g(τ, Z) = exp

(
a0(τ) + a′(τ)Z +

1

2
Z ′A(τ)Z

)
, (3.16)
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where

Z =

(
X
Y

)
, a(τ) =

(
aX(τ)
aY (τ)

)
, A(τ) =

(
AX(τ) AXY (τ)
A′

XY (τ) AY (τ)

)
,

(3.17)
and AX(τ)，AY (τ) is a symmetric matrix.

Then we can confirm that a semi-analytical solution for the PDE (3.13)
is expressed as

G(t, Z) = α
1
γ

∫ T−t

0
g(s, Z) ds+ (1− α)

1
γ g(T − t, Z). (3.18)

We use the following notation.

λ =

(
λX
λY

)
, Λ =

(
ΛX 0
0 ΛY

)
, L =

(
KX + γ−1

γ ΛX 0

0 KY + γ−1
γ ΛY

)
.

Substituting g and its derivatives into the PDE (3.16） and paying at-
tention to Z ′L′AZ = Z ′AL′Z, we get

da0
dτ

+ Z ′ da

dτ
+

1

2
Z ′dA

dτ
Z =

1

2
(a′a+ tr[A]) + Z ′Aa+

1

2
Z ′AZ

− γ − 1

γ
λ′a− γ − 1

γ
Z ′Aλ− Z ′L′a− 1

2
Z ′L′AZ − 1

2
Z ′ALZ

− γ − 1

2γ2
λ′λ− γ − 1

γ2
Z ′Λ′λ− γ − 1

2γ2
Z ′Λ′ΛZ

− γ − 1

γ
(ρ0 − ι0)− γ − 1

γ
Z ′
(
ρ− ι
0

)
− γ − 1

2γ
Z ′
(
R− Ip 0

0 0

)
Z − β

γ
.

(3.19)

Since the above equations are identical equations on Z, the following system
of ordinary differential equations (ODEs) for (a0, a, A) is derived.

da0
dτ

=
1

2
(a′ a+tr[A])−γ − 1

γ
λ′a−

(
γ − 1

2γ2
λ′λ+

γ − 1

γ
(ρ0−ι0)+β

γ

)
, a0(0) = 0,

(3.20)
da

dτ
= (A−L)a−γ − 1

γ
Aλ−γ − 1

γ2
Λ′λ−γ − 1

γ

(
ρ− ι
0

)
, a(0) = 0,

(3.21)
dA

dτ
= A2−L′A−AL−γ − 1

γ2
Λ′Λ−γ − 1

2γ

(
R− Ip 0

0 0

)
, A(0) = 0.

(3.22)
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We also use the following notation.

a∗(t, Zt) =
α

1
γ
∫ τ
0 g(s, Zt)a(s) ds+ (1− α)

1
γ g(τ, Zt)a(τ)

α
1
γ
∫ τ
0 g(s, Zt) ds+ (1− α)

1
γ g(τ, Zt)

,

A∗(t, Zt) =
α

1
γ
∫ τ
0 g(s, Zt)A(s) ds+ (1− α)

1
γ g(τ, Zt)A(τ)

α
1
γ
∫ τ
0 g(s, Zt) ds+ (1− α)

1
γ g(τ, Zt)

.

Then we have Proposition 2.

Proposition 2. Under Assumptions 1-4, an optimal control for the problem
(2.29) satisfies

c∗t =
α

1
γW ∗

t

α
1
γ
∫ τ
0 g(s, Zt) ds+ (1− α)

1
γ g(τ, Zt)

, (3.23)

Ψ∗
t =

1

γ

(
λ+ ΛZt

)
+ a∗(t, Zt) +A∗(t, Zt)Zt

=
1

γ

(
λX + ΛXXt

λY + ΛY Yt

)′
+

(
a∗X(t, Zt) +A∗

X(t, Zt)Xt +A∗
XY (t, Zt)Yt

a∗Y (t, Zt) +A∗
XY (t, Zt)

′Xt +A∗
Y (t, Zt)Yt

)
, (3.24)

where (a0, a, A) is given by (3.25)-(3.27)and A is

a0(τ) =

∫ τ

0

{
1

2
(a(s)′a(s)+tr[A(s)])−γ − 1

γ
λ′a(s)−

(
γ − 1

2γ2
λ′λ+

γ − 1

γ
(ρ0 − ι0) +

β

γ

)}
ds,

(3.25)

a(τ) = exp

(∫ τ

0
(A(s)− L)ds

)
×
∫ τ

0

(
−γ − 1

γ
A(s)λ− γ − 1

γ2
Λ′λ− γ − 1

γ

(
ρ− ι
0

))
e−

∫ s
0 (A(s)−L)dtds,

(3.26)

A(τ) = C2(τ)C
−1
1 (τ), (3.27)

where (
C1(τ)
C2(τ)

)
= exp

(
τ

(
L −IN̄
Q −L′

))(
IN̄
0N̄

)
, (3.28)

where

Q = −γ − 1

γ2
Λ′Λ− γ − 1

2γ

(
R− Ip 0

0 0

)
. (3.29)

Proof. See Appendix A.5.
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3.3 Example for Optimal Investment

Let J and Ĵn denote the number of domestic bonds (or bond groups) and of
the n-th foreign bonds (or bond groups), respectively. Suppose N̄ = I+J+∑N

n=1(În + Ĵn). Then we can uniquely determine the optimal investment
strategy.

Let ΦP
t and ΦS

t denote the investment-wealth ratio of the domestic bonds
and of the domestic indices, respectively. Let BP and BS denote the volatil-
ities of the domestic bonds and of the domestic indices, respectively. Simi-
larly, let ΦP

nt and Φ
S
nt denote the investment ratio of the n-th foreign bonds

and of the n-th foreign indices, respectively. Let BP
n and BS

n denote the
volatilities of the n-th foreign bonds and of the n-th foreign indices, respec-
tively.

Let Φt andB denote the investment ratio vector process and the volatility
matrix of the investment ratio vector process defined by

Φt =



ΦP
t

ΦS
t

Φ̂P
1t

Φ̂S
1t
...

Φ̂P
Nt

Φ̂S
Nt


, B =



BP

BS

B̂P
1

B̂S
1
...

B̂P
N

B̂S
N


. (3.30)

We use the following notation.

∆ΛX
t =

(
0M×(I+J) ∆ΛX

1t ∆ΛX
2t · · · ∆ΛX

Nt

)
, (3.31)

∆ΛY
t =

(
0N×(I+J) ∆ΛY

1t ∆ΛY
2t · · · ∆ΛY

Nt

)
, (3.32)

where ∆ΛX
nt is anM×(În+ Ĵn)matrix, and ∆ΛY

nt is an N×(În+ Ĵn) matrix,
which are given by

∆ΛX
nt =

(
ΛX
t − Λ̂X

nt ΛX
t − Λ̂X

nt · · · ΛX
t − Λ̂X

nt

)
, (3.33)

∆ΛY
nt =

(
ΛY
t − Λ̂Y

nt ΛY
t − Λ̂Y

nt · · · ΛY
t − Λ̂Y

nt

)
. (3.34)

Suppose that each country’s bond index is incorporated into the portfo-
lio, i.e., I = Î1 = · · · = ÎN = 1. Let ψt(τ) and ψ̂nt(τ) denote the domestic
incorporation ratio and the n-th foreign incorporation ratio, respectively.
Note that ∫ τ̄

0
ψt(τ)dτ =

∫ τ̄

0
ψ̂nt(τ)dτ = 1, ∀n ∈ {1, · · · , N}.
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We use the following notation.

ΦS
t =


Φ1
t

Φ2
t
...
ΦJ
t

 , BP =

∫ τ̄

0
ψt(τ)b(τ)

′dτ, BS =


b′1
b′2
...
b′J

 ,

Φ̂S
nt =


Φ̂1
nt

Φ̂2
nt
...

Φ̂Ĵn
nt

 , B̂P
n =

∫ τ̂n

0
ψ̂nt(τ)b̂n(τ)

′dτ, B̂S
n =


b̂′n1
b̂′n2
...

b̂′
Ĵn

 ,

for all n ∈ {1, · · · , N}.
Then it follows from eqs. (2.25)(3.24) that the investment vector Φt is

calculated as

Φt =
1

γ

(
B′ +∆ΛX

t

∆ΛY
t

)−1(
λX + ΛXXt

λY + ΛY Yt

)′

+

(
B′ +∆ΛX

t

∆ΛY
t

)−1(
a∗X(t, Zt) +A∗

X(t, Zt)Xt +A∗
XY (t, Zt)Yt

a∗Y (t, Zt) +A∗
XY (t, Zt)

′Xt +A∗
Y (t, Zt)Yt

)′
. (3.35)

Remark 5. In order to compare international investment with domestic
investment, we consider a case of domestic investment, i.e., N̄ = I + J and

Φt =

(
ΦP
t

ΦS
t

)
, B =

(
BP

BS

)
. (3.36)

Then the optimal investment Φt is given by

Φ̃t =
1

γ
B′−1

(
λX + ΛXXt

)
+B′−1

(
aX +AXXt

)
. (3.37)

Comparing eq. (3.35) with eq. (3.37), in the optimal international in-
vestment ratio, the market price λY +ΛY Yt of currency risk, the disparities
∆ΛX

t between domestic and foreign market prices of global economy risk,
and the disparities ∆ΛY

t between domestic and foreign market prices of cur-
rency risk appear, while all of them do not appear in the optimal domestic
investment ratio. This indicates that in international investment, investor
should customarily estimate the market price of currency risk, the disparities
between domestic and foreign market prices of global economy risk, and the
disparities between domestic and foreign market prices of currency risk as
well as the global economy factor, the currency factor, and the market price
of the global economy risk.
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A Proofs

A.1 Proof of Lemma 1

Suppose that πXt is given by

dπXt
πXt

= µXt dt+ (σXt )′dBX
t . (A.1)

Since any domestic security price process S̃t does not depend on the currency
factor by Assumption 1, the arbitrage-free price process satisfies

dSt
St

= (rt + σ′tΛ
X
t )dt+ σ′t dB

X
t . (A.2)

Thus by Assumptions 1 and 2, the product of the state-price deflator and
the security price S̃t satisfies

d(πtSt)

πtSt
=

dπt
πt

+
dSt
St

+

(
dπt
πt

)(
dSt
St

)
=

dπXt
πXt

+
dπYt
πYt

+
dSt
St

+

(
dπXt
πXt

)(
dSt
St

)
=

(
µXt + rt + σ′t(σ

X
t + ΛX

t )
)
dt+ (σXt + σt)dB

X
t − ΛY

t dB
Y
t .

By definition of state-price deflator, the product of the state-price deflator
and the security price is an exponential martingale, which implies

µXt + rt + σ′t(σ
X
t + ΛX

t ) = 0. (A.3)

Hence, we obtain eq. (2.5).
Secondly, we prove eq. (2.6). Note the following holds by definition of

state-price deflator.
π̂nt = πntε

n
t . (A.4)

Thus putting eq. (2.3) into eq. (A.4) and taking logarithm of both sides of
the equation yield

log εnt = log π̂Xnt + log π̂Ynt − log πXt − log πYt . (A.5)

Differentiating the above equation and substituting eqs. (2.5) and (2.4), we
obtain eq. (2.6).
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A.2 Proof of Lemma 2

Following Kikuchi citeKi, we show the proof. It follows from Girsanov’s
theorem that the process B̃X

t defined by

B̃X
t = BX

t +

∫ t

0
ΛX
s ds, (A.6)

is a standard Brownian motion under the risk-neutral measure. Then the
SDE for Xt under the the risk-neutral measure is rewritten as

dXt =
(
−KXXt − ΛX

t

)
dt+ dB̃X

t

= {−λX − (KX + ΛX)Xt} dt+ dB̃X
t .

Regard the default-free bond P T
t as a derivative written on the instanta-

neous interest rate rt. Since rt is a quadratic function of Xt, P
T
t is expressed

as an analytic function f(Xt, t), i.e.,

P T
t = f(Xt, t). (A.7)

It follows from arbitrage-free condition that f is a solution to the PDE:

ft+{−λX−(KX+ΛX)Xt}′fX+
1

2
tr[fXX ]−

(
ρ0 + ρ′Xt +

1

2
X ′

tRXt

)
f = 0,

f(XT , T ) = 1. (A.8)

Then f is expressed as

f(Xt, t) = eb
0(τ)+b(τ)′Xt+

1
2
X′

tΣ(τ)Xt , (b0(0), b(0),Σ(0)) = (0, 0, 0), (A.9)

where b0(τ), b(τ), B(τ) are analytic functions of τ = T − tand Σ(τ) is a sym-
metric matrix. Differentiating (A.9) and putting the result into eq. (A.8),
we have

−db
0(τ)

dτ
−X ′

t

db(τ)

dτ
−1

2
X ′

t

dΣ(τ)

dτ
Xt+{−λX−(KX+ΛX)Xt}′(b(τ)+Σ(τ)Xt)

+
1

2

(
b(τ)′b(τ) + tr[Σ(τ)]

)
+X ′

tΣ(τ)b(τ) +
1

2
X ′

tΣ
2(τ)Xt

−
(
ρ0 + ρ′Xt +

1

2
X ′

tRXt

)
= 0. (A.10)

Since the above eq. is an identical equation on Xt, eq. (2.15) is obtained.
Finally, differentiating eq. (A.9), we get eq. (2.13).
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On the j-th index, Kikuchi [9] shows that Sj
t is given by

Sj
t = exp

(
b0j t+ b′jXt +

1

2
X ′

tΣjXt

)
. (A.11)

Hence, the dividend rate process is

Dj
t

Sj
t

= d0j + d′jXt +
1

2
X ′

tΣjXt. (A.12)

Then the following identical equation on Xt is obtained from eqs. (A.11)
and (A.12) and arbitrage-free condition that

b0j+{−λX−(KX+ΛX)Xt}′(bj+ΣjXt)+
1

2

(
b′jbj+tr[Σj ]

)
+X ′

tΣjbj+
1

2
X ′

tΣ
2
jXt

+

(
d0j + d′jXt +

1

2
X ′

t∆jXt

)
−
(
ρ0 + ρ′Xt +

1

2
X ′

tRXt

)
= 0. (A.13)

Thus we have eq. (2.18).
On the n-th foreign country’s default-free bond, the following equation

holds from arbitrage-free condition,

dP̂ T
nt

P̂ T
nt

=
(
r̂t + (b̂n(τ) + Σ̂n(τ)Xt)

′Λ̂X
t

)
dt+(b̂n(τ)+ Σ̂n(τ)Xt)

′dBX
t , (A.14)

Then we have eq. (2.19). In the similar way, we obtain eq. (2.22).

A.3 Proof of Lemma 3

Let (ϑ, (ϑ(τ)), (ϑj), (ϑ̂n(τ)), (ϑ̂
j
n)) denote the portfolio. The nominal value

of wealth is given by

W̃t = ϑtPt+

∫ τ̄

0
ϑt(τ)Pt(τ)dτ+

J∑
j=1

ϑjtS
j
t+

N∑
n=1

∫ τ̂n

0
ϑ̂nt(τ)Pnt(τ)dτ+

N∑
n=1

Ĵn∑
j=1

ϑ̂jntS
j
nt.

(A.15)
Then given ct, the self-financing portfolio (ϑ, (ϑ(τ)), (ϑj), (ϑ̂n(τ)), (ϑ̂

j
n))
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satisfies

dW̃t

W̃t

=
1

W̃t

{
ϑtdPt +

∫ τ̄

0
ϑt(τ)dPt(τ)dτ +

J∑
j=1

ϑjt

(
dSj

t +Dj
tdt
)

+

N∑
n=1

∫ τ̂n

0
ϑ̂nt(τ)dPnt(τ)dτ +

N∑
n=1

Ĵn∑
j=1

ϑ∗jnt

(
dSj

nt +Dj
ntdt

)
− pt

W̃t

ctdt

}

=
ϑtPt

W̃t

dPt

Pt
+

∫ τ̄

0

ϑt(τ)Pt(τ)

W̃t

dPt(τ)

Pt(τ)
dτ +

J∑
j=1

ϑjtS
j
t

W̃t

dSj
t +Dj

tdt

Sj
t

+

N∑
n=1

∫ τ̂n

0

ϑ̂nt(τ)Pnt(τ)

W̃t

dPnt(τ)

Pnt(τ)
dτ +

N∑
n=1

Ĵn∑
j=1

ϑjntS
j
nt

W̃t

dSj
nt +Dj

ntdt

Sj
nt

− ct
Wt

dt

}

=

(
1−

∫ τ̄

0
φt(τ)dτ −

J∑
j=1

Φj
t −

N∑
n=1

∫ τ̂n

0
φ̂nt(τ)dτ −

N∑
n=1

Ĵn∑
j=1

Φ̂j
nt

)
dPt

Pt

+

∫ τ̄

0
φt(τ)

dPt(τ)

Pt(τ)
dτ +

J∑
j=1

Φj
t

dSj
t +Dj

tdt

Sj
t

+

N∑
n=1

∫ τ̂n

0
φ̂nt(τ)

dPnt(τ)

Pnt(τ)
dτ +

N∑
n=1

Ĵn∑
j=1

Φ̂j
nt

dSj
nt +Dj

tdt

Sj
nt

− ct
Wt

dt.

Thus the SDE for Wt is derived as

dWt

Wt
=
dW̃t

W̃t

− itdt

=

(
1−

∫ τ̄

0
φt(τ)dτ −

J∑
j=1

Φj
t −

N∑
n=1

∫ τ̂n

0
φ̂nt(τ)dτ −

N∑
n=1

Ĵn∑
j=1

Φ̂j
nt

)
dPt

Pt

+

∫ τ̄

0
φt(τ)

dPt(τ)

Pt(τ)
dτ+

J∑
j=1

Φj
t

dSj
t

Sj
t

+

N∑
n=1

∫ τ̂n

0
φ̂nt(τ)

dP̂nt(τ)

P̂nt(τ)
dτ+

N∑
n=1

Ĵn∑
j=1

Φ̂j
nt

dŜj
nt

Ŝj
nt

− ct
Wt

dt.

Substituting eqs. (2.12), (2.13), (2.16), (2.19), and (2.22) into the above
eq. and organizing the result yield eq. (2.26).
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A.4 Proof of Proposition 1

Firstly, the optimal consumption control is calculated as

c∗t = α
1
γ e

−β
γ
t
J
− 1

γ

W = α
1
γ e

−β
γ
t
{
e−βt(W ∗

t )
−γGγ

}− 1
γ
= α

1
γ
W ∗

t

G
,

and thus eq. (3.11) is obtained.
Secondly, derivatives of J are given by

Jt = −βJ, WtJW = (1− γ)J, JX = γ J
GX

G
, JY = γ J

GY

G
,

W 2
t JWW = −γ(1−γ)J, WtJXW = γ(1−γ)J GX

G
, WtJYW = γ(1−γ)J GY

G
,

JXX = γ J

{
(γ − 1)

GX

G

G′
X

G
+
GXX

G

}
, JY Y = γ J

{
(γ − 1)

GY

G

G′
Y

G
+
GY Y

G

}
.

Then the nominator and the denominator of right-hand side of eq. (3.12)
are rewritten as

ψt = J

(
(γ − 1)

(
ΛX
t

ΛY
t

)
+ γ(γ − 1)

(GX
G
GY
G

))
, (A.16)

W 2
t JWW = γ(γ − 1)J. (A.17)

Thus putting eqs. (A.16) and (A.17) into eq. (3.12), we have eq. (3.12).
The second and third terms in eq. (3.8) are calculated from eqs. (A.16) and
(A.17) as

1

2
tr
[
XJXX + JY Y

]
− ψ′

tψt

2W 2
t JWW

=
γ

2
J tr

[{
(γ − 1)

GX

G

G′
X

G
+
GXX

G

}
+

{
(γ − 1)

GY

G

G′
Y

G
+
GY Y

G

}]
− 1

2γ(γ − 1)
J

(
(γ − 1)

(
ΛX
t

ΛY
t

)
+ γ(γ − 1)

(GX
G
GY
G

))′(
(γ − 1)

(
ΛX
t

ΛY
t

)
+ γ(γ − 1)

(GX
G
GY
G

))
= γJ

{
1

2
tr

[
GXX

G
+
GY Y

G

]
−γ − 1

2γ2

((
ΛX
t

)′
ΛX
t +
(
ΛY
t

)′
ΛY
t

)
−γ − 1

γ

(
ΛX
t

ΛY
t

)′(GX
G
GY
G

)}
.

(A.18)

The seventh term in eq. (3.8) is calculated from eq. (3.2) as

γ

1− γ
c∗tJW = α

1
γ
W ∗

t

G
γ
J

W ∗
t

= α
1
γ γ

J

G
. (A.19)

Substituting eqs. (A.18) and (A.19) into eq. (3.8), and multiplying by
G/(γJ) yield eq. (3.13).
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A.5 Proof of Proposition 2

It is straightforward to see that a0(τ) and a(τ) are expressed as eqs. (3.25)
and (3.26). Following Theorem 5.2 in Arimoto [2], we prove that A(τ) is
expressed as eq. (3.27). We consider the following initial value problem
of linear differential equation for N × N matrix-value functions C1(τ) and
C2(τ).

d

dτ

(
C1(τ)
C2(τ)

)
=

(
L −IN̄

−γ−1
γ2 Λ′Λ −L′

)(
C1(τ)
C2(τ)

)
,

(
C1(τ)
C2(τ)

)
=

(
IN̄
0N̄

)
.

(A.20)
A solution to eq. (A.20) is given by eq. (3.28). Since we can prove C1(τ) to
be regular3, we define A(τ) by eq. (3.27). Then noting that

d

dτ
C−1
1 (τ) = −C−1

1 (τ)

{
d

dτ
C1(τ)

}
C−1
1 (τ), (A.21)

we can derive

d

dτ
A(τ) =

{
d

dτ
C2(τ)

}
C−1
1 (τ) + C2(τ)

d

dτ
C−1
1 (τ)

=

(
−γ − 1

γ2
Λ′ΛC1(τ)− L′C2(τ)

)
C−1
1 (τ)−A(τ) (LC1(τ)− C2(τ))C

−1
1 (τ)

= A2(τ)− L′A(τ)−A(τ)L− γ − 1

γ2
Λ′Λ,

and thus confirm that A(τ) satisfies Riccati equation (3.22). For uniqueness
of the Riccati equation, see proof in Theorem 5.2 in Arimoto [2]. Finally, for
symmetry of A(τ), taking transposition of Riccati equation (3.22) for A(τ)
yields the same equation for A(τ)′, which implies A(τ)′ = A(τ) because of
uniqueness of the Riccati equation.

3See proof in Theorem 5.2 in Arimoto [2].
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